—1

Hewlett Packard
Enterprise

Accelerating scientific research through high
performance computing democratization

Andrew Shao, PhD

Senior Software Engineer, Master Technologist, HPE

Scott Bachman, PhD

Research Scientist, National Center for Atmospheric Research
Visiting Research Scholar, HPE

15 February 2023

ABOUT Andrew

Background:

« Oceanography, computational physics,and applied mathematics
— Brief stints in economics and philosophy
« Specialties:Numerical methods, climate modelling, combining HPC and Al

Relevant Interests:
« Community-based scientific software development
« Combining numerical and data-based approaches
« Building complex Al/ML and simulation workflows

—

Roles: Hewlett Packard
« Senior HPC & Al Research Scientist, HPE Canada Ente rprise

— | 2

ABOUT Scott

Background:
 Climate Scientist, National Center for Atmospheric Research (Boulder,CO)
« Specialties: Physical Oceanography, model development, turbulence

Relevant Interests:
« High performance computing for Earth system prediction
« Exascaledata analysis
« Democratization of science and scientifictools

NCAR

—

Current role: Hewlett Packard
« Visiting Scholar, Hewlett Packard Enterprise (Chapel Development Team) Enterprise

— E

Outline

Scientific computing - the individual’s perspective
Scientific computing - the institutional perspective
Open-sourcing Al/ML with SmariSim

Open-sourcing distributed computing with
Chapel/Arkouda

4

Scott’s haphazard education in computing

- Exposed to C++ (undergrad, ca. 2003)

- Learned MATLARB in first course on scientific programming (grad school, ca. 2007)

- First interaction with HPC (2008)
Career turned foward computational science
- First interaction with MPI / OpenMP (2008) (fluid dynamics)

- Startedlearning Python (2009)
"Python is the way of the future”
- MATLAB not open source

- First encounter with € and Fortran (2015) <@ (areer turned toward climate science

- Inundation with Fortran (2017, start of currentjob)

- First encounter with Dask (2019) At any given career stage, | only learned

the language(s) | needed for my job.

- Chapel (2022)

Scientists and Computers: Fun Facts

Scientists’ computing skills and comfort level vary dramatically.
Scientists are curious about new computing technologies.
Scientists are suspicious about new computing technologies.
Scientists strongly prefer the “show” in “show-and-tell”.

Most scientists are easily waylaid by DIY software setup.
Scientists develop a strong loyalty to solutions that “just work”.
Scientists develop a strongloyalty to languages and programs.

Scientists developinertia against learning new solutions, languages, and programs.

o © N o Uk WP

Scientists don’t have the bandwidth to seek incremental performance improvements on their own.
10.Scientists’ careers are shaped by the computing solutions that are available fo them.

11.Scientists LOVE software engineers.

Scientists and Computers: Fun Facts

1. Scientists’ computing skills and comfort level vary dramatically.

- Communication has to be adjusted for the audience.

- Will this scientist appreciate what your solution is offering to
them, or the solution itself?

Uncomfortable! Comfortable!

Scientists and Computers: Fun Facts

1. Scientists’ computing skills and comfort level vary dramatically.

- Communication has to be adjusted for the audience.

- Will this scientist appreciate what your solution is offering to

them, or the solution itself?

-+ chape —————ouvro—
|

|— Python (Dask)
|——— Python ___l

|— C / Fortran —I

| 8

Scientists and Computers: Fun Facts

2. Scientists are curious about new computing technologies.

- Scientists enjoy learning!
- Scientists think many things are “cool” or “interesting”.

- Scientists are ALWAYS looking for better / faster / easier ways to do their work.

Cheering at NASA Mission Control after Mars Perseverance landing.

Scientists and Computers: Fun Facts

3. Scientists are suspicious about new computing technologies.

- Opportunity cost?
- Scientists are wary of investing time + effort.
- lIsit hype? Orisit legit?

- Solutions often “trickle down” from specialists to non-specialists.

Example:
Software engineers Univ. faculty
Computational labs @ Individual scientists
System admins Tutorials
Gov’t labs Workshops

PANG=0

A community platform for Big Data geoscience

—

10

Scientists and Computers: Fun Facts

4. Scientists strongly prefer the “show” in “show-and-tell”.

- Is it hype? Oris it legit?
Beyond a Reasonable Doubt
- Easier to see where the solution fits in their own work (e.g. use cases).

- Scientists are naturally skeptical. Clear and Convincing Evidence
- Scientists are trained to sniff out incomplete or inaccurate solutions.

) == == == == 1| Preponderanceof Evidence
- Burden of proof is squarely on you.

Probable Cause

Reasonable to Believe

Reasonable Suspicon

: | 1

Scientists and Computers: Fun Facts

5. Most scientists are easily waylaid by DIY software setup.

- Things like compiling and linking libraries can be very foreign concepfs.
- Many scientists do not have admin privileges over their clusters.

- Many scientists only have basic familiarity with their clusters.

- Many scientists do not know what is possible.

- Many institutions provide slow and ineffective tech support.

- Scientists may just move on, rather than wait or wrestle to get it working!

Modelers

12

Scientists and Computers: Fun Facts

6. Scientists develop a strong loyalty to solutions that “just work”.

- Scientists want to spend time on science, not software.
- Scientists get excited by solutions that are easy to set up and work well.
- Scientists will often re-use solutions. A LOT.

- Scientists will share good solutions with other scientists, especially students.

Movies using my barotropic turbulence code

These two models have the same viscosity in the basin interior, but the right-hand one has increased viscosity in a thin layer near the boundary. This layer is able
to control the circulation strength, sith the help of eddy fluxes delivering vorticity from the interior. (a plot of potential vorticity)! Movie.

Good parameterization! These two calculations have different viscosities, but very similar time-mean flows. | call these solutions homoparic, for same mean.
Movie.

These calculations have the same viscosity, but the larger basins have an opposing wind forcing in the northern region. Their circulation strength is reduced by
the addition of this region. Movie.

Working MATLAB code that is still hosted on my Ph.D.
: advisor’s website, nearly 20 years after it was written.

13

Scientists and Computers: Fun Facts

7. Scientists develop a strong loyalty to languages and programs.

- Research programs tend to build on themselves / repeat.

- “I'putin all that effort to learn _

”

- Clear understanding whether the solution will work for the current problem

- Feeling of “ownership”

PROGRAMMERS FOR
OUR MAINFRAME

WE NEED COBOL

MILLENIUM PROBLEM.

3. ams www.unitedmedia.com

IF YOU SEE ANYONE
(WHO LOOKS LIKE

A COBOL PROGRAMMER,
LET ME KNOW.

© 1997 United Feature Syndicate, Inc.

W7

PROGRAMMER 7

NO, BUT T'M OFTEN
TOLD T LOOK LIKE
ONE. '

ARE YOU A coacﬂ

14

Scientists and Computers: Fun Facts

8. Scientists develop inertia against learning new solutions, languages, and programs.

- worked before, and it will work again.”

- Proficiency takes time. Time is precious.

- Thereis a competency threshold for performing

Unconscious
Competence Right Intuition

Conscious
Competence Right Analysis
Conscious
Incompetence Wrong Analysis
Unconscious
Incompetence Wrong Intuition

Hierarchy of Competence

cutting-edge science.

- Islanguage REALLY necessary to solve

my problem?

Scientists and Computers: Fun Facts

9. Scientistsdon’t have the bandwidth to seek incremental performance improvements on their own.

- Incrementalimprovement may not be worth the time.
- Thereis a software engineer down the hall who could do it for me...
- Lack the time/skill to self-improve.

- Computer science and technology may be terra incognita.

16

Scientists and Computers: Fun Facts

10. Scientists’ careers are shaped by the computing solutions that are available to them.

- Compute power < problem size

+ GDP{USS Billion) ® Leading @ Rismfnﬂ @ Startup

countnes coun

countries

- Have you spent time at a national lab?
Do you know someone there?

- Can you obtain the program / code /

solution you need?

- Naturally leads to research and

disciplinary silos

- Fight back with Open Source and

democratization! , _. ; , z .

Data source: 10C, 2021

Regression Analysis of Computing Index and GDP (Graphic: Business Wire)
https://www.businesswire.com/news/home/20220715005001/en/

17

Scientists and Computers: Fun Facts

11. Scientists LOVE software engineers.

— | 18

HPC and Scientific Computing:
From feudalism to democratization

| 19

Historical HPC in the weather
domain

Numerical simulations of weather stretch back
to the ENIAC (1950)

» Eventoday,some weather/climate models
contain lines of code first writtenin the

1970s <\

‘ \H -
R atelelel o ial

Many concepts commonplace now in HPC ICIWANINN | .

were manual processes and/or were developed 7 I -

hand-in-hand with hardware , %

0
L
f
'

0

wed o o

0

0

0

4}

P 0.0

10 0

= I
ol .')

Specialized hardware, skills,and knowledge =>
Concentration of expertise in silos =>
Rise of “feudal states” (e.g. national labs)

(S % 8

P
N

(818§ § 3
3.8 8 P

OONOOOONOY o N

9000 0t

MMM NEN)
(3 R 8 B08 8.8 8 8 3

(S S 588
(373,200 al
00t
Lot

OOOOOOOEN
P

OO0

300000000
LLLOLLOLOLLOO

(8 s 2 0 0 2.8 28 o)
3y UMY

Oyt st

LoLUOOLL

ST

‘3""
Ay
£ ANy

E— — = e o

ENIAC 1952; Getty Research Institute

Artifacts from the feudal era discovered by an amateur code archaeologist (me)

e Strong competition between academic/government fiefdoms meant that advances in knowledge were
shared but not the tools

e Postdocs at national labs can make entire careers in academia because of access to code/knowledge

» Siloing means that both the model AND infrastructure to run the model have long lineages
« Strongly interconnected
« Backwards compatibility

Getty Images

21

Persistent cultural artifacts from that era

e The good ideas of yesterday form the legends of
today

« Programming “tricks” do not necessarily apply to
modern day

» Specialization of knowledge and hardware meant “roll
your own” was the only viable way forward

e Reverse card: Are ‘modern’ software languages
needed?
« Do they match needs/requirements?

— Write once, use forever
— Long ‘release’ timelines (~5 years)
« Maybe the right path for ‘new’ simulations

e Legacy doesn’t mean ‘old’ code; it means history and
knowledge

E—

Towards a more democratic era of scientific computation

° Key drlverS from The feudal era 1-0 -I-he & mom-ocean / MOMSG6 Public < EditPins + ®Unwatch 52 ~ % Fork 191 ~ Starred 159 ~
democraleaTlon <> Code (© Issues 44 §9 Pullrequests ¥ Zenhub ©)) Discussions () Actions [Projects 1 07 wiki

» Open-source software: reproducibility, skeptical
. . ¥ main ~ ¥ 1branch © 0 tags o to file dd file ~ <> Code ~ About
evaluation, and sharing e vhee (=R = N

1 . I jiandewang Merge pull request +/ 71e1104 last week 9 10,573 commits
» Cheaper/easier HPC hardware: Lower barrier to
enTry a nd po rTa b I I ITy .github Switch from mpich to openmpi 2 weeks ago ocean-circulation-models
G 'I'. I 'I' . I‘I‘ d I gitlab itlab-ci: add e " 8 i numerical-modeling ocean-circulation
° enera Iona urnover In CU ure an personne .gi gitlab-ci: add concurrent jobs in run stage months ago
.testing FMS2: open_ASCII_file and open_namelis... 5 months ago 0 Readme
g S . &8 View license
. ac Disable sigsetjmp for default compilation 5 months ago
e The new reality: | o #r 150 stars
config_src use ungridded dimension for pstokes and ... 2 months ago ® 52 watching
L SO frware englneerlng IS On an eq Ual fOOTIng TO docs edits for resolving rtd compile errors 4 months ago % 191 forks

scientific advancement
— Technical debt impedes scientific advancement

o Community use and criticism of your code drives
innovation o

« Modern software engineering ® resostor N Nemoe faw]i
principles/frameworks lead to .

— Higher productivity @ cieo

N Nemo © NEMO Sources > Nemo

-0- 437 Commits ¥ 39 Branches <71 Tag E 1.4 GB Project Storage 77 1 Release

Codebase to compile the modelling framework, user guide is on https://sites.nemo-ocean.io/user-guide

— Faster onboarding, easier transfer of knowledge €2 Externl i matie | | &
§™% Update mppini.F90 (¥) | s7bbeses

%= Clement Rousset authored 3 days ago

: | 23

Making Al/ML available to the masses (of scientists/engineers)

» Present day reality has mismatches between simulation and Al
« Skillsets/philosophy
— Scientists are frained to go from fundamental principles to solution
— ML goes from data-first and develops ad-hoc relationships

e Hardware:
“Our scientific simulations have the arithmetic intensity of a
potato” - Ocean model developer

—Is the hardware ‘correct’ for the problem?

I Fercent of single authored papers

» Continuingscientificadvancement requires collaboration
amongst scientists of all flavors

e Too much knowledge and information for any one person (or
domain) to know .

Percent of single authored papers
nN
o

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

» Open source software can be where culfures meet
e Provides a ‘common language’
o Community-vetting of tools
o Lowers barriers to entry

https://quantifyinghealth.com/number-of-authors-of-research-papers/

: | 24

What Computer and Domain Scientists can do together:
A case study in climate

| 25

The problem of combining Al/ML and climate

2@

Climate Scientist Machine Learning Engineer
Knowledge Physics and mathematics Al and computer science
Hardware CPU GPU
Software Language Fortran Python

26

HPE’s solution for the software/hardware

HPE’s open source SmartSim library bridges the divide by providing:
* Scalable database for storing ML models and data
* Support for GPU/CPU workloads
Inference “engine” to do ML prediction
Native database communication clients in C/C++/Fortran/Python with minimal changes to simulation code
Enables calling ML models for training and inference in legacy code

E—

27

The start of a solution: the People part

o
sMaRT El]

Scott and NCAR Scientists Andrew HPE Engineers
“We know climate” “I know a little about both” “We know machine learning”

Life Lesson 1: Find the people who will take the time to learn from each other
Life Lesson 2: Trust each other’s expertise to cover each other’s knowledge gaps

E— | 2

It works! First demonstration of online prediction in a realistic ocean simulation

1900-01-01 12:00:00
. ,‘:__“ R,

0.00 0.02 0.04 0.06 0.08 0.10
Eddy Kinetic Energy [m? s—2]

* 970 billion inferences over 10 simulation years

* ~12,000 CPU cores but only 16 GPUs (efficient use of expensive resources!)
* All necessary code and training scripts were released as open source

* Available and being used by MOM6 users

E—

29

Summary and next steps

Ocean/Climate Modelling

e SmartSim is now an ‘official’ solution for ML inside MOM6
« Compatible open-sourcelicense was critical for acceptance into trunk

e Gaining interest within the NEMO ocean model community
« Solutionis open-source
 Scientificdemonstrationis freely available

Larger-scale value to commercial sector

“I didn’t realize how quickly we'd be able to start using ML”
- Anonymous Principal Engineer

e Removes the technical barriers to creating simulation/Al applications

e Users can spend more time experimenting instead of creating infrastructure

e Allows users to only use GPU resources as needed (cheaper overall to prototype and run)
e Promotes thinking about simulations as part of a larger application

E—

30

Chapel and Arkouda:
Exemplary models of democratized HPC

| 31

What is Chapel?

Chapel: A modern parallel programming language N
« portable & scalable
« open-source & collaborative _,
CGoals:

« Qupport general parallel programming
« Make parallel programming at scale far more productive

| 32

Chapel’s Multiresolution Philosophy

1. Users should be able to program at high levels of abstraction and get good performance™*

Dst = Src[Inds]; /1 whole-array index gather

2. Yet, when more control / better performance is needed, they can drop to lower levels....

forall (d, i) in zip(Dst, Inds) do // paralel loop-based index gather
d = Srcl[i];

..and even lower levels, as necessary...
coforall loc in Dst.targetLocales do // explict SPMD-style index gather

on loc do
forall i in Dst.localSubdomain do
Dst.localAccess[1] = Src[Inds.locallAccess|[i]];

..where “calling out to C/ QUDA/ MPI / etc.” is effectively the lowest level

3. Chapel buildsits higher-level abstractions in terms of the lower-level ones to guarantee compatibility

1 ™ - Distributed computing for the masses! | 33

Chapel is amazing!

proc GetRHS(ref q_in : [] complex, ref RHS : [] complex) {

var jaco_hat : [D3_hat] complex;
var drag_tmp : [D_hat] complex;
var drag_hat : [D_hat] complex;
var Uu_drag : [D] real;
var Uv_drag : [D] real;

/* Advection x/
Jacobian(qg_in,RHS);

/* Mean advection, beta and viscosity */
forall (i,j,k) in D3_hat {
RHS[i,j,k] = RHS[i,j, k] - @*uBar[il*1ixkx[j, kI*q_in[i,], k]
- (beta + gyBar[il)*xv_hat[i,j, k] — A8*(k2[j, kl#x4)*xq_in[i,j, k];
}

... but models like this are “set and forget”...

... and the VAST majority of scientists do analysis, not
modeling...

(OCEAN _EERLIcve f@ \ QQMMOD%&E =~20
MEETING | attendees & aftendees

... and most analysis workflows are exploratory,
spontaneous, bespoke, and evolve constantly...

Analysis is where all the action is! How do we serve
those potential customers?

Enter Arkouda

Motivation: Say you've got...
...a bunch of Python programmers

...HPC-scale data science problems to solve
...access to HPC systems

https://www.cscs.ch/computers/piz-daint/

- — '

i ll ’ ~. &

! = ~ — y
A: i ki A'

——e—
“If ltl .w I -
===SEEss et

; L _‘ i =r ::l;_. ‘ [.[
= N 11
E E)

.)\

How will you leverage your Python programmers to get your work done?

—

35

Arkouda’s Approach

Arkouda Client
(wrltten in Python)

[Dig_add_SUM Last Crckport: 16 minutes g0 iutosaved)

Arkouda Server (wrltten in Chapel)

4» Writes Python code in Jupyter
Invokmg NumPy/Pandas ops

| 36

HPC-scale analysis from the comfort of your own home

[49/1956]

[mcdonald@raptor arkoudal$./arkouda_server -nl 1

ok 3k 2 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k ok ok 3k 3k 3k 3k 3 ok 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k 3k 3k 3k 3k ok 3 3k 3k 3k 3k 3k 3k ok 3k 3k 2k k 3k 3k 3 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k ok ok ok 3k 3k ok %k ok dk ok ok ok ok ok ok ok
ok ok o e ok 3 ok %k ok ok ok ok %k
ke 2k 2k 2 3k 2 3k 3k 3k 3k vk ok ok ok ko 3k 3k ke kv 3k 3k 3k 3k 3k ok 3k ok 2k 2k dk k3 3k 3k 3k ok ok ok ok ok ok 3k ok ok ok k3 ok ok 3k 3k 3k dk 3k 3k ok ok 2k ok 3k ok ok ok ko ko ok ok ok ok k ok

bk sk ok ok ok 3k ok 3k ok ok ok ok ok ok

server listening on tcp://prod-0001:5555
arkouda server version = v2023.02.08+4.g84cc870c.dirty
built with chapel versionl.30.0 (b7180b8e99)
memory limit = 180454669516

bytes of memory used = @

N
ok ok 3k 3k 3k 3k 3 3k 3k 3k 3k 3k 3k ok ok 3k ok ok k3K 3k 3k 3k 3k 3k ok 3k 3k ok 3k ok 3k ok ok 3k sk ok 3k 3k 3k 3k 3k 3k ok 3k ok ok 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok ok 3k ok 3k 3k ok 3k ok ok %k ok 3k ok ok k ok k ok
ok ok 3k ok 3k k3 ok ok 3k ok ok ok k

Dk 3 2 2 3k 3 3 3k 3 3k ok ok 3k ok ok 3k ok ok ok ok 3k e 3k 3k 3k sk ok 3k ok ok ok ok 3k ok ok 3k 3 ok ok ok 3k ok 3k ok ok ok ok ok ok ok 3k ok 3k ko 3k 3k sk ok ok ok ok 3k ok ok ok ok 3k ok 3k ok 3k 3k ok ok ok ok k ok

ok 3k ok 3k ok ok ok ok 3 ok ok ok ok ok

(arkouda-dev) ~/arkouda master

$ python3

Python 3.10.7 (main, Sep 15 2022, 01:51:29) [Clang 14.0.0 (clang-1400.0.29.102)
] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import arkouda as ak

1

\/ _

Il
I\

£ .. |
Il
I\ |

— — — — — —

Client Version: v2023.02.08+1.9787497a9
>>> ak.connect('prod-0001', 5555)
/Users/ben.mcdonald/arkouda/arkouda/client.py:232: RuntimeWarning: Version mism
atch between client (v2023.02.08+1.9787497a9) and server (v2023.02.08+4.g84cc87
@c.dirty); this may cause some commands to fail or behave incorrectly! Updating
arkouda is strongly recommended.
warnings.warn(
connected to arkouda server tcp://*:5555
>>>

Courtesy: B. McDonald

This is democratized HPC!

HPC-scale analysis from the comfort of your own home

(base) bachman@r4i2né4:/glade/scratch/bachman/arkouda> | |

This is democratized HPC!

| 38

Summary

e SmartSim allows users to build complex Al and simulation applications today
« “It just works” even if you don’t understand the entire tech stack

e Chapel helps to bring HPC to the masses
« Arkouda brings Chapel to the masses via Python

e Democratization of HPC is more than just “sharing is caring”
« Fundamental for progress!

e Academia is more open and collaborative than industry tends to be
« Secrecy is frowned upon => Anything closed source is viewed with suspicion

e Sharing and communication are crucial for scientists to make advances
« OSS is the mechanism to make that possible

E—

39

Thank you

Andrew.Shao@hpe.com
Scott.Bachman@hpe.com

© 2023 Hewlett Packard Enterprise Development LP

mailto:Andrew.Shao@hpe.com

