

Hewlett Packard Enterprise

Learn how AI hackers detect fragility and how to thwart them with AI model resilience

Soumyendu Sarkar, Senior Distinguished Technologist and Senior Director - AI, HPE Labs Ashwin Ramesh Babu, Expert AI Research Scientist, HPE Labs Sajad Mousavi, Expert AI Research Scientist, HPE Labs

March 20, 2024 9AM PT/12PM ET/6PM CT

Introduction

Robustness Evaluation for Image Classifiers

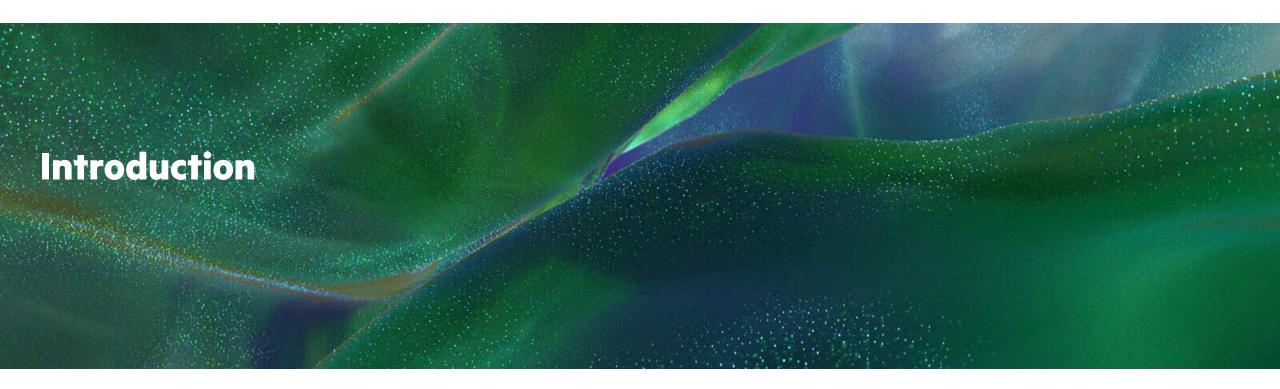
Robustness Refinement

Visual Explanation

Signals and ECG Classification

Video Classification

Benchmark and Summary



Vulnerability of ML models and Measuring Trustworthiness

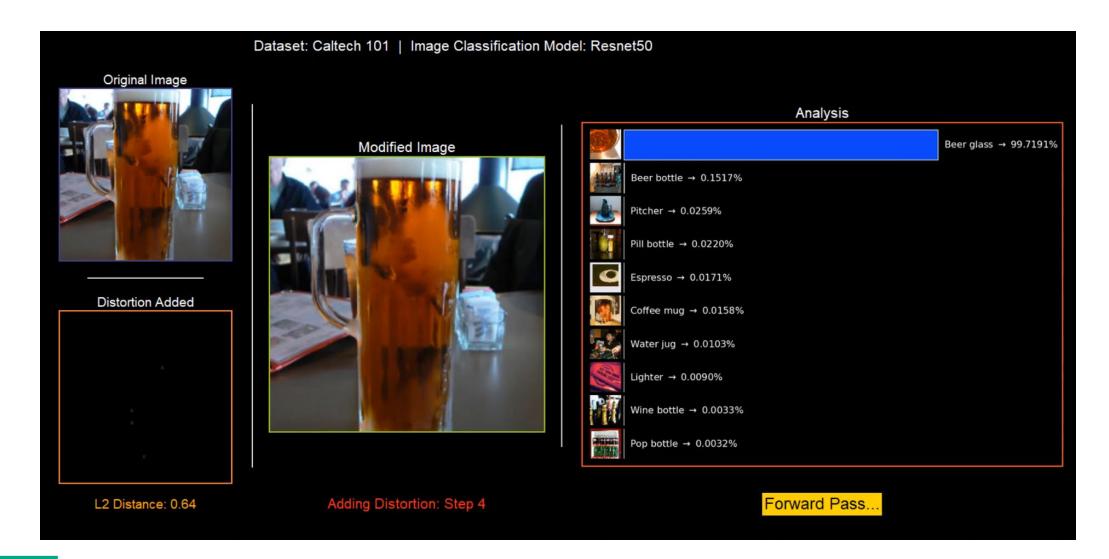
In Machine learning models a small perturbation of data may cause a model to misclassify

Increased Regulations for Machine Learning usage will require algorithmic audit and measurement of Trustworthiness

Test data sets used are limited to static testing and are unable to catch real world distortions or adversarial attacks

As ML models are complex, we need smart ML agents to analyze ML models

RLAB: Measuring robustness of image classification (CNN) Model



ML to test robustness of image classification model

Why do we need it ?

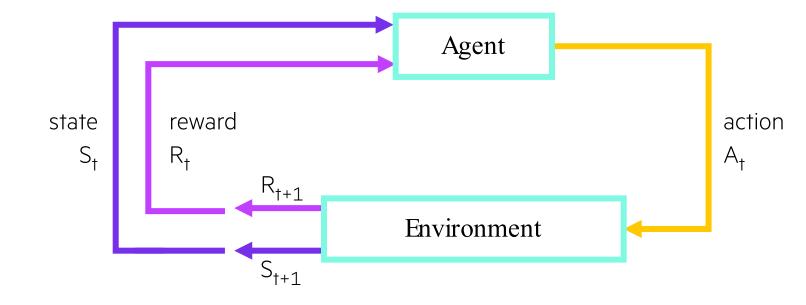
- Robustness of Machine Learning models is key for Trustworthiness
- Robustness of ML models is key for ensuring consistent classification accuracy with variations in input data and is an important element of trustworthiness.
- Quantitative metric for robustness and can be used for algorithmic audit for trustworthiness

What do we need it to do?

- We model perturbations that occur naturally at deployment because of distortions from camera or from adversarial attacks.
- To tackle the complexity of ML models, Hewlett Packard Labs developed Reinforcement Learning based smart agents to evaluate robustness of ML models, by finding the minimum distortion needed for misclassification.
- *RLAB* Reinforcement Learning based Adversarial Black-box attack, is HPE Lab's Platform for measuring robustness and other aspects of Trustworthy AI
- For robustness with image classification models, RLAB supports several types of naturally occurring distortions like Gaussian noise, Gaussian blur, and dead pixels.
- This technique can help retrain the ML models to enhance robustness against outliers. Trustworthy AI from Hewlett Packard Labs @ Hewlett Packard Enterprise

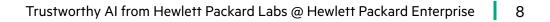
Robustness Evaluation for Image Classifiers

Reinforcement Learning

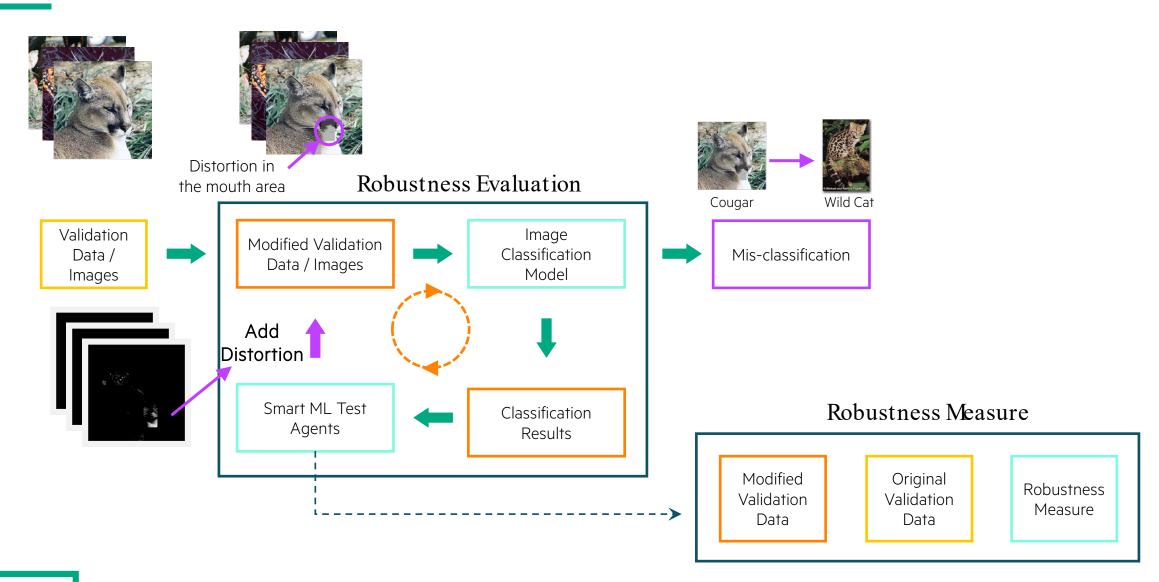


At each step, the agent:

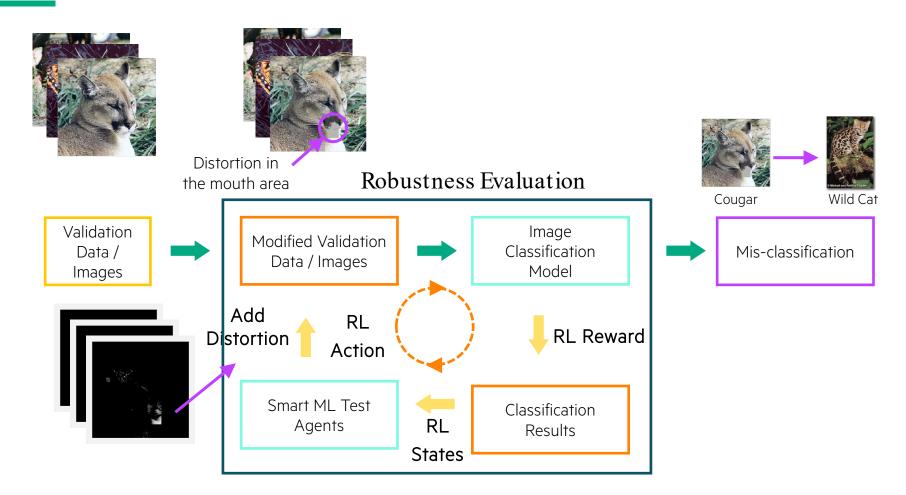
- Executes action
- Observe new state
- Receive reward



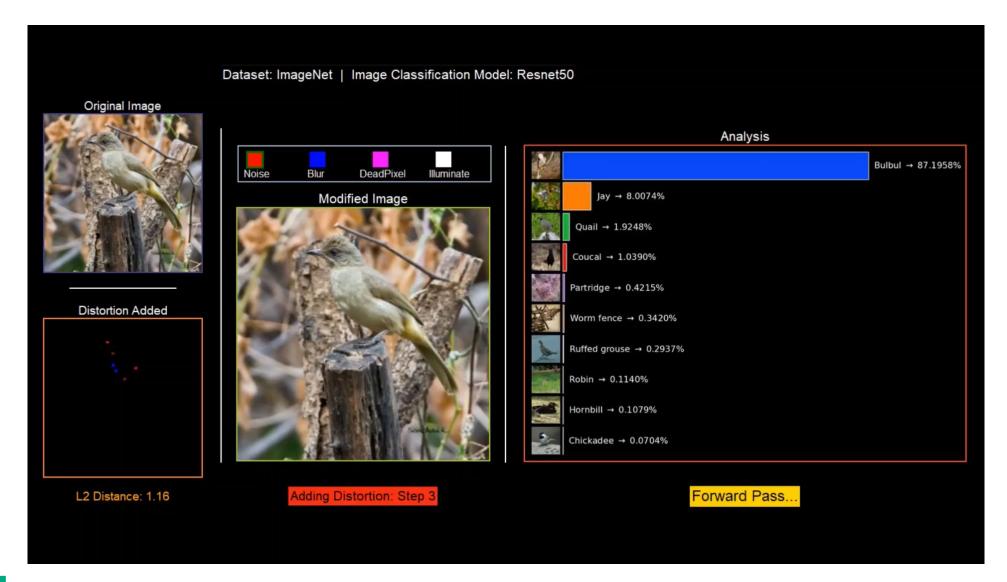
Measuring robustness of Black Box image classification (CNN) model



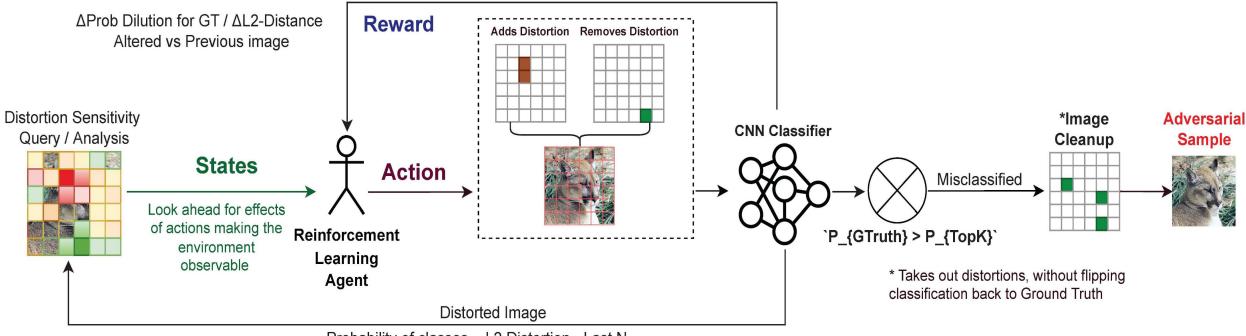
Measuring robustness : Reinforcement Learning Agent



Measuring Robustness with Multiple Custom Distortions

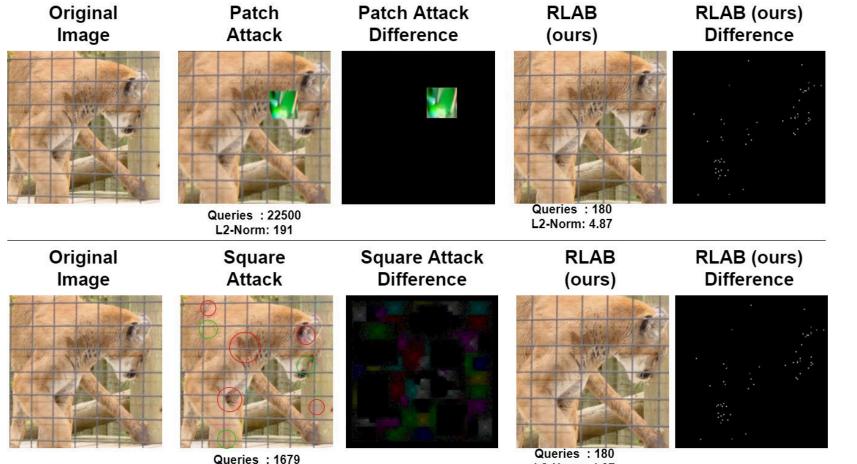


Reinforcement Learning for Adversarial Black Box Attack (RLAB)



Probability of classes, L2 Distortion - Last N

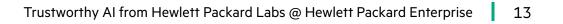
Comparison with SOTA: Natural Distortions relevant to Deployment



L2-Norm: 5

L2-Norm: 4.87

- Most state-of-the-art competitive solutions use unnatural modifications.
- In contrast, our proposed method preserves the true nature of the image with barely perceptible Gaussian noise.
- Patch Attack's distortion measured in L2-norm is significantly higher.
- The popular "Square Attack" has unnatural color blobs.



Comparison of RLAB to SOTA for Adversarial Attack

Table I: Comparing L_2 and average queries of the proposed method with competitors on the ResNet-50 model trained on Imagenet dataset.

Attack	AVG.Q	L_2	ASR
Q-Fool [26]	5000	7.52	-
NES (2018) [14]	1632	-	82.7
Bandits _{T D} (2018) [27]	5251	5	80.5
HopSkipJumpAttack [28]	1000	11.76	-
Subspace(2019) [29]	1078	-	94.4
P-RGF _D (2019) [30]	270.5	-	99.3
LeBA (2020) [16]	178.7	-	99.9
Square (2020) [5]	401	5	99.8
SimBA-DCT (2021) [15]	1665	3.98	98.6
querynet (2021) [19]	-	5	-
AdvFlow (2021) [20]	746	-	96.7
EigenBA (2022) [17]	518	3.6	98
Pixle (2022) [18]	341	-	98
CG-Attack (2022)[21]	210	-	97.3
Patch Attack (2022) [16]	983	-	-
RLAB (ours)	169	4.01	100%

Table 2: Performance comparison of RLAB with State-of-the- art methods with Inception-V3, and VGG-16 on ImageNet dataset.

Method	Incept	cion-v3	VG	G-16	
	ASR %	AVG.Q	ASR %	AVG.0	S
NES (2018) [14]	88.2	1726.2	84.8	1119	
Bandits _{T D} (2018) [27]	97.7	836.I	91.1	275.9)
Subspace (2019) [29]	96.6	1035.8	96.2	1086	
$P-RGF_D$ (2019) [30]	99	637.4	99.8	393.	
TIMI (2019) [32]	49	-	51.3	-	
LeBA (2020) [16]	99.4	243.8	99.9	145.5	5
Sgr. Attack (2020) [5]	99.4	351.9	100	142.3	3
SimBA (2021) [15]	99.9	423.3	-	-	
querynet (2021) [19]	-	518	-	-	
AdvFlow (2021) [20]	99.3	694	95.5	1022	
EigenBA (2022) [17]	95.7	968	-	-	
Pixle (2022) [18]	-	-	99	519	
CG-Attack (2022) [21]	100	139	99.4	77	
Patch Attack [16]	-	-	-	-	_
RLAB(ours)	100	132	100	98	

Table 3: Evaluation of the proposed method with competitors on ResNet-50 model trained on CIFAR-10 dataset

Attack	Avg. queries	S. Rate
SimBA-DCT [15]	353	100
AdvFlow [20]	841.4	100
MetaAttack [33]	363.2	100
AdvFlow [20]	598	97.2
CG-Attack [21]	81.6	100
EigenBA [17]	99	99.0
RLAB (ours)	60	100

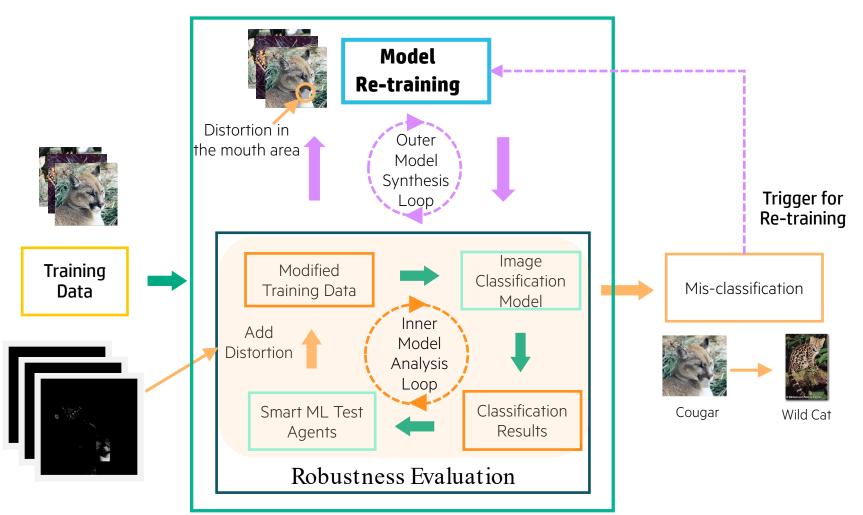
Tab;e 4: Comparison between Dynamic policy driven patch selection and baseline for 'N'. **Dataset:** Ima- genet, **Model:** ResNet-50

Approach	Average queries	Average L_2
Dynamic	169	4.03
Baseline	210	5.62

Table 5: Ablation study on different patch sizes **Dataset:** Imagenet, **Model:** ResNet-50

Patch Size	AVG. Q	Average L_2	ASR %
2x2	179	4.03	100
4x4	197	11.29	100
8x8	188	17.52	100
16x16	133	32.16	100
32×32	114	63.45	100

retrain and add robustness to cnn model

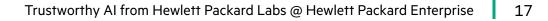


Model Refinement to increase Robustness

Results: Effectiveness of Re-training for Robustness with SOTA

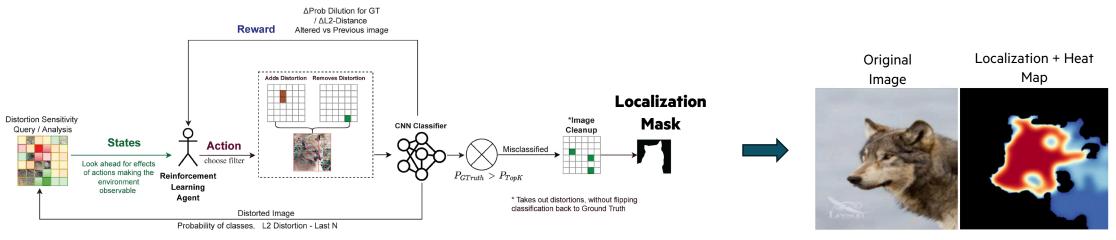
		Classification Error (%) with Re-training			
Dataset	Evaluated Against↓	SimBA Adv Training	Square Adv Training	RLAB Adv Training	
CIFAR-10	SimBA	-	99.80	7.81	
CIFAR-10	Square	55.83	55.83 -		
CIFAR-10	RLAB	88.60	97.80	-	
Caltech-101	SimBA	-	2.15	1.37	
Caltech-101	Square	32.77 -		28.75	
Caltech-101	RLAB	75.00	75.04	-	

Robustness comparison of our approach with Square and SimBA attack on ResNet-50 model with different datasets. Each attack was evaluated with the same 1000 samples generated from the test set.



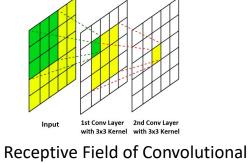
Visual Explanation: Localization Mask with Heat Map

Important to understand the reasoning behind a model's predictions and to ensure that decisions are based on relevant features.



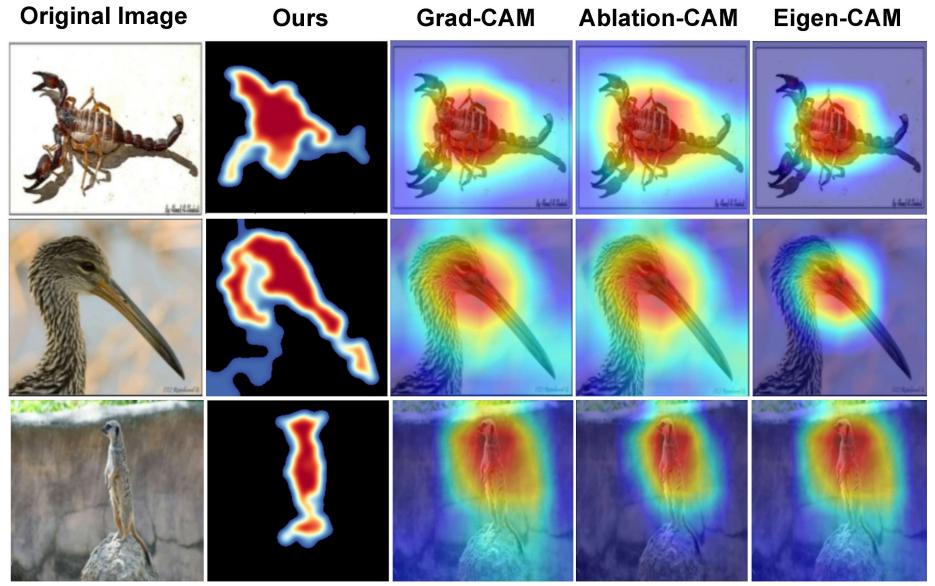
Reinforcement Learning based Architecture

Heat Map



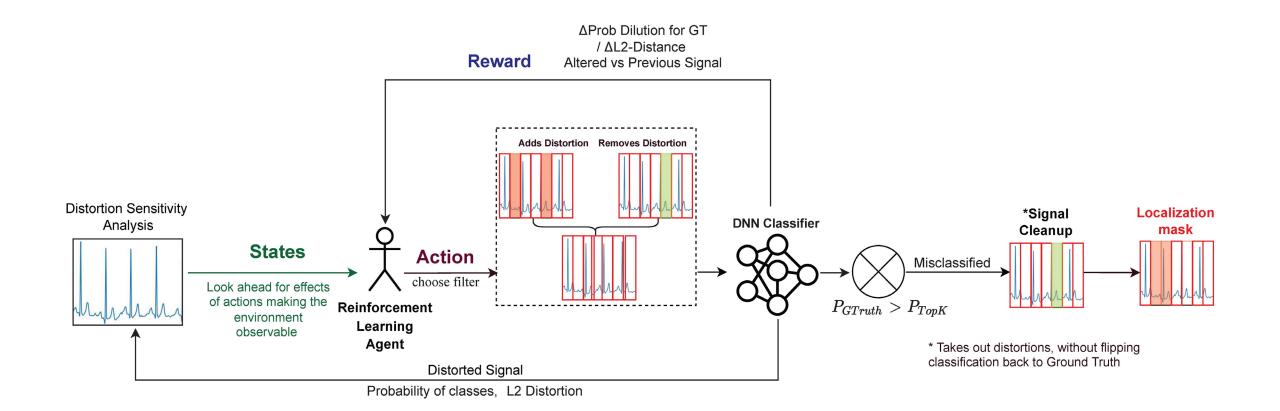
Neural Networks

Visual Explanation with RLAB

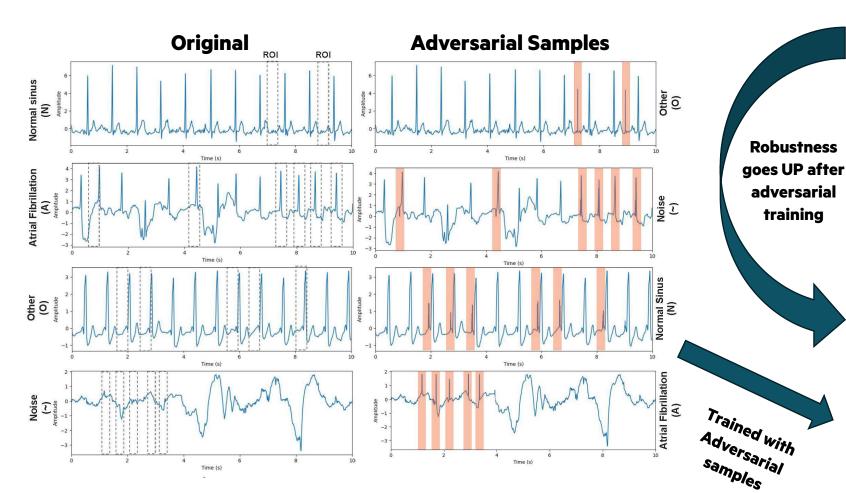


Signals and ECG Classification

ECG Arrhythmia Detection Models: Explainability and Robustness



ECG Arrhythmia Detection Models: Robustness



Noise Type	Seg-length (ms)	AVG Q	AVG L_2	ASR
	10	14.54	3.40	100%
	16.67	16.96	3.70	100%
Motion Artifact	33.33	30.86	4.81	100%
	50	17.90	5.05	100%
	(10, 16.67)	20.88	3.20	100%
	(16.67, 33.33)	28.02	3.46	100%
Detached Device	3.33	4.58	8.37	100%
	6.66	2.36	11.27	100%
	10	3.12	12.94	100%
	(3.33, 6.66)	2.26	10.71	100%
	(6.66, 10)	2.48	11.68	100%

Avg L_2 and Q represent the average L2 and queries over all samples, respectively. * ms stands for milliseconds.

Average L2 and Queries as a **measure of Robustness** of the ResNet model trained on PhysioNet Challenge 2017 dataset, **WITHOUT the Adversarial ECG signals**. **We see lower metrics.**

Noise Type	Noise Type Seg-length (ms)		AVG L_2	ASR
	10	85.10↑	3.90	100%
	16.67	61.34↑	4.41	100%
Motion Artifact	33.33	33.86↑	5.32	100%
	50	27.70↑	5.54	100%
	(10, 16.67)	40.30↑	4.09	100%
	(16.67, 33.33)	42.74↑	4.78	100%
Detached Device	3.33	5.22↑	14.28	100%
	6.66	4.28↑	18.24	100%
	10	3.14↑	18.67	100%
	(3.33, 6.66)	4.78↑	16.36	100%
	(6.66, 10)	3.30↑	18.16	100%

Avg L_2 and Q represent the average L2 and queries over all samples, respectively. * ms stands for milliseconds.

Average L2 and Queries as a **measure of Robustness** of the ResNet model trained on PhysioNet Challenge 2017 dataset, **WITH the Adversarial ECG signals**.

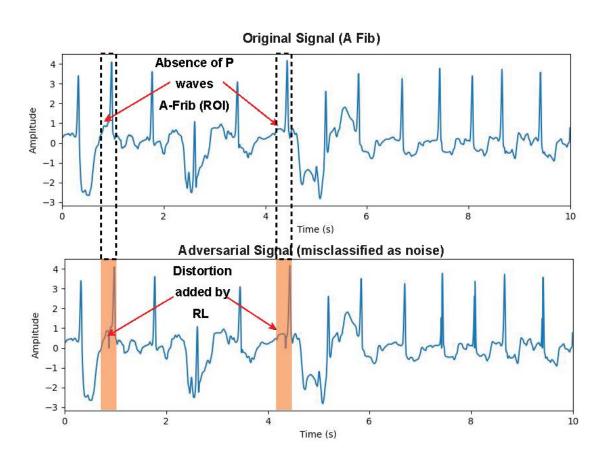
We see higher metrics indicating improved Robustness.

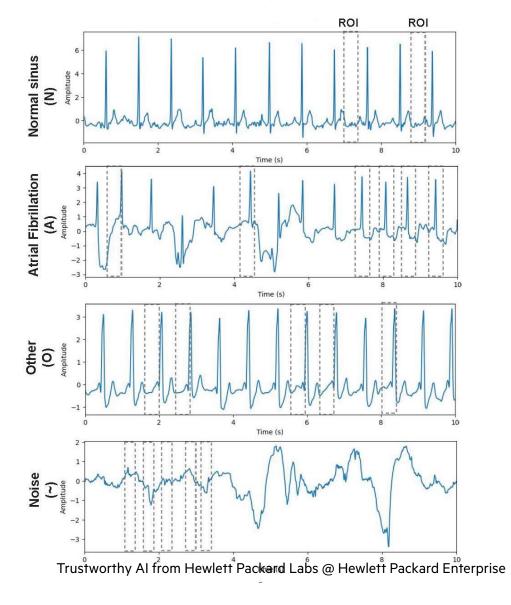
Trustworthy AI from Hewlett Packard Labs @ Hewlett Packard Enterprise

ECG Arrhythmia Detection Models: Explainability

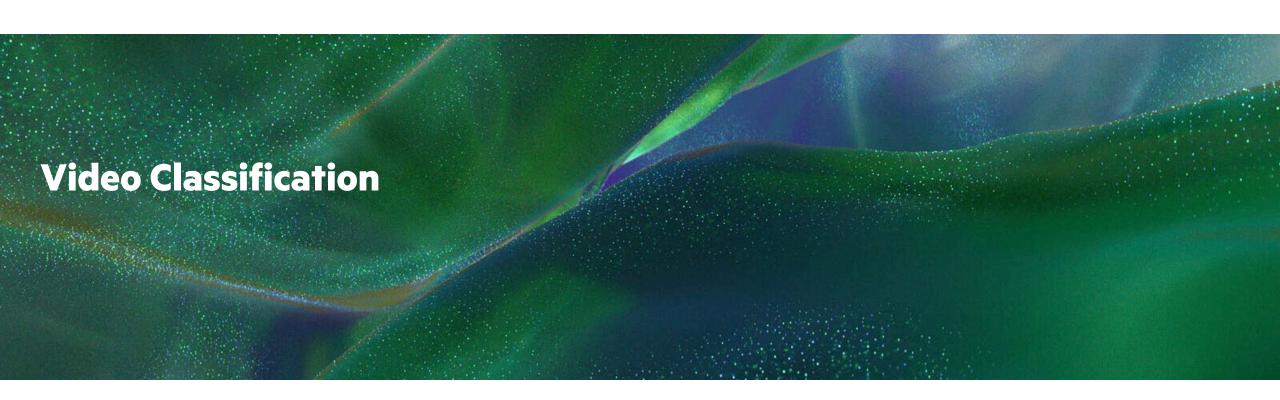
Visual Explanation

Marking the ROI

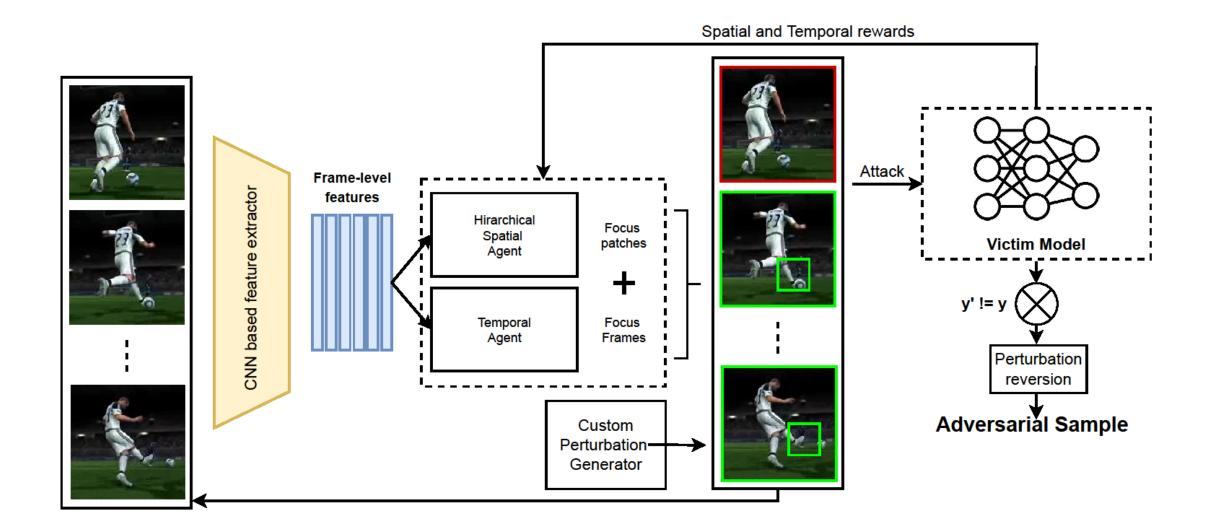




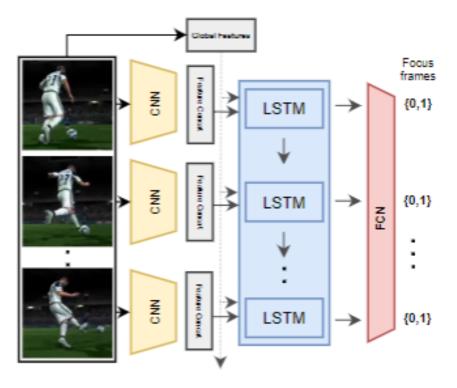
24



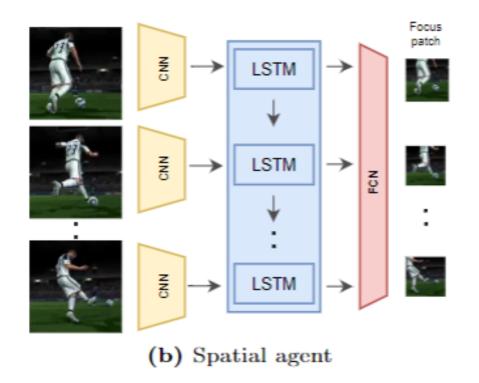
Video Classification: Adversarial Attack for Robustness Evaluation with RL



Video Classification: Adversarial Attack for Robustness Evaluation with RL



(a) Temporal agent

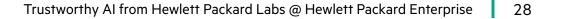


Video Classification: Adversarial Attack for Robustness Evaluation with RL

Original video

(<u>OURS</u>) Adversarial video

(SOTA) Adversarial video



Adversarial Attack on Videos for Robustness Evaluation with RL

		HMDB-51			J	JCF-101	
THREAT	HREAT Attack Methods	MAP ↓	QN ↓	SR ↑	MAP ↓	QN ↓	SR ↑
MODELS	Heuristic attack	5.043	10385	58	5.956	10657	40
	Motion-sampler attack	7.229	3911	90	7.237	5187	83
	GEO-TRAP attack	5.919	3164	<u>92</u>	5.865	3782	88
TSM [8]	RLSB attack	5.323	5950	82	4.823	4898	87
	AstFocus attack	3.411	1529	100	3.355	1138	96
	Ours (GB)	0.835	921	83	0.735	863	85
	Ours (DP)	1.824	600	90	2.491	306	94
	Heuristic attack	5.395	10146	58	5.265	9135	51
	Motion-sampler attack	7.275	3667	88	6.895	4744	78
	GEO-TRAP attack	5.192	3392	88	5.472	3782	75
TSN [9]	RLSB attack	5.312	4217	92	5.238	3504	93
	AstFocus attack	3.520	2198	96	3.265	2015	99
	Ours (GB)	0.677	8433	<u>96</u>	0.676	3243	91
	Ours (DP)	2.373	238	98	2.417	373	96
	Heuristic attack	4.838	10534	42	6.295	14160	30
	Motion-sampler attack	7.035	6491	42 68	6.153	8132	62
	GEO-TRAP attack	5.666	5082	84	5.877	7045	75
C3D [10]	RLSB attack	4.688	7279	62	5.326	6568	68
	AstFocus attack	3.835	3628	00	4.015	4224	90
	Ours (GB)	0.835	8710	95	2.258	1783	$\frac{90}{81}$
	Ours (DP)	1.824	378	95	6.351	2602	81

EFFECTIVENESS METRICS

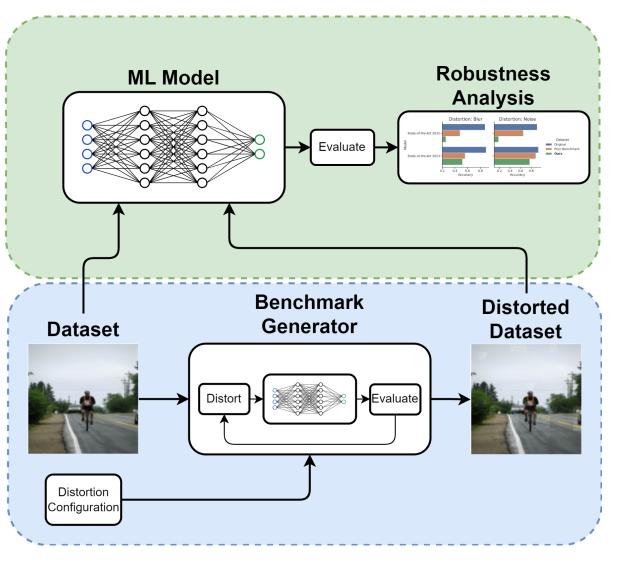
Benchmark and Summary

Generating Benchmark Dataset for Image Classification with RobustBench

ROBUSTBENCH

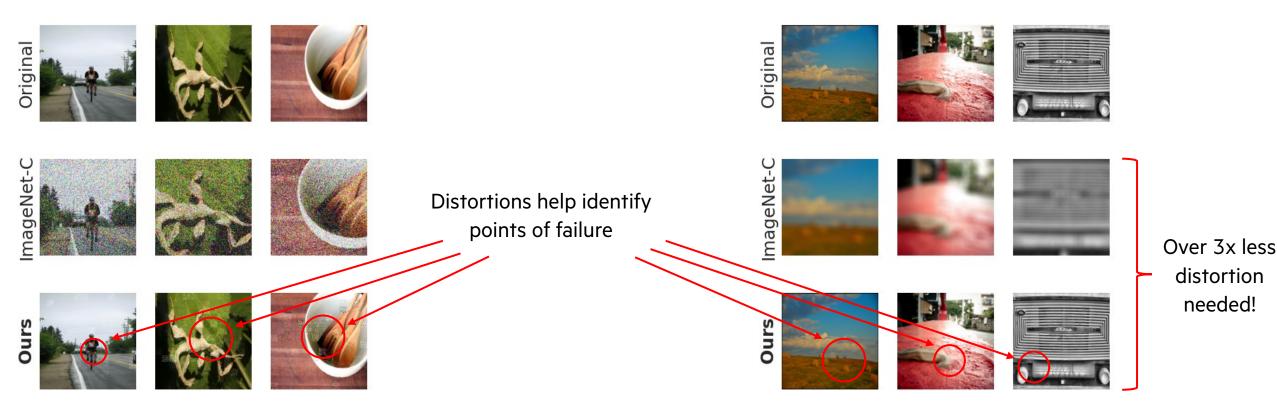
A standardized benchmark for adversarial robustness

- Highly reputable resource that tracks the state-ofthe-art in robustness methods
- Robustness methods continuously evaluated against select challenging benchmarks
- Our generated benchmarks are experimentally demonstrated to be more difficult than those comprising RobustBench for state-of-the-art robustness methods



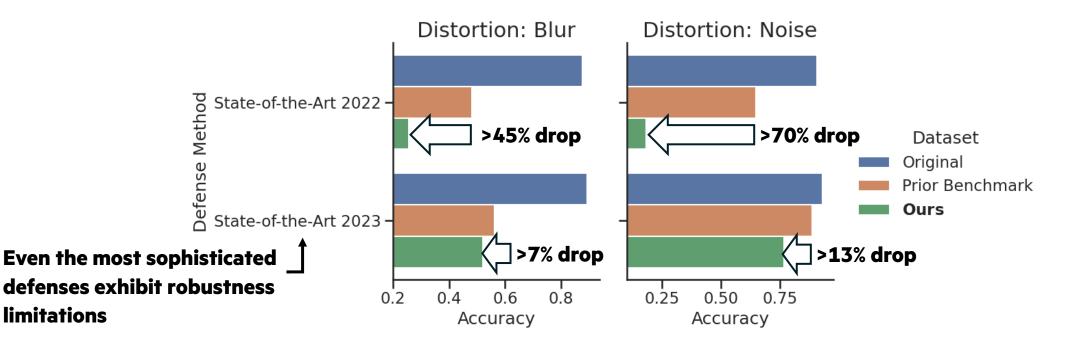
Superior Distortion Generation for Benchmark Dataset for Image Classification

- Higher fidelity & clarity of original images
- Our distortions are better for measuring robustness
- Our distortions enable effective auditing of model failures



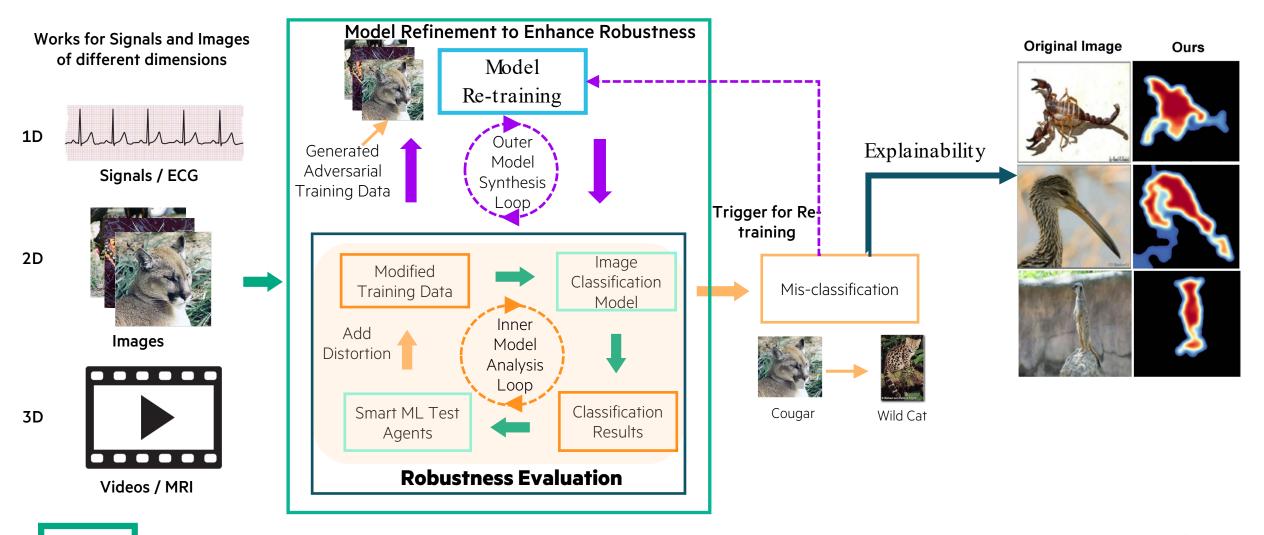
Superior Distortion Generation for Benchmark Dataset for Image Classification

- Our benchmark generator more effectively identifies robustness issues than prior benchmarks
- Effective for multiple types of distortions and levels of distortion
- Experiments show the state-of-the-art is still susceptible to real-world distortions



Reinforcement Learning for Robustness Evaluation, Enhancement, and Explanation

Important to understand the reasoning behind a model's predictions and to ensure that decisions are based on relevant features.



Publications

Q Robustness With Query-Efficient Adversarial Attack Using Reinforcement Learning:

- CVPR 2023 workshop proceedings
- https://tinyurl.com/y2yvckp5

RL-cam: Visual explanations for convolutional networks using reinforcement learning:

- CVPR 2023 workshop proceedings
- https://tinyurl.com/2skw93pw

Benchmark Generation Framework With Customizable Distortions for Image Classifier Robustness:

- WACV 2024 proceedings
- https://tinyurl.com/38hwsst8

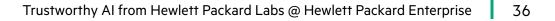
RTDK-BO: High Dimensional Bayesian Optimization with Reinforced Transformer Deep kernels:

- IEEE CASE 2023 proceedings
- https://ieeexplore.ieee.org/abstract/document/10260520

Tune in for our work on Trust for LLMs

D Evaluating LLMs for Trust

□ Refining LLMs for Trust



Thank you

Trustworthy AI from Hewlett Packard Labs @ Hewlett Packard Enterprise © 2024 Hewlett Packard Enterprise Development LP