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Vulnerability of ML models and Measuring Trustworthiness

In Machine learning models a small perturbation of data may cause a model to misclassify

Increased Regulations for Machine Learning usage will require algorithmic audit and measurement of Trustworthiness

Test data sets used are limited to static testing and are unable to catch real world distortions or adversarial attacks

As ML models are complex, we need smart ML agents to analyze ML models
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RLAB: Measuring robustness of image classification (CNN) Model
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ML to test robustness of image classification model

Why do we need it ?

• Robustness of Machine Learning models is key for 
Trustworthiness

• Robustness of ML models is key for ensuring 
consistent classification accuracy with variations in 
input data and is an important element of 
trustworthiness. 

• Quantitative metric for robustness and can be used 
for algorithmic audit for trustworthiness

What do we need it to do ?

• We model perturbations that occur naturally at deployment because 
of distortions from camera or from adversarial attacks. 

• To tackle the complexity of ML models, Hewlett Packard Labs 
developed Reinforcement Learning based smart agents to evaluate 
robustness of ML models, by finding the minimum distortion needed 
for misclassification. 

• RLAB – Reinforcement Learning based Adversarial Black-box attack, 
is HPE Lab’s Platform for measuring robustness and other aspects of 
Trustworthy AI

• For robustness with image classification models, RLAB supports 
several types of naturally occurring distortions like Gaussian noise, 
Gaussian blur, and dead pixels.

• This technique can help retrain the ML models to enhance 
robustness against outliers.
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Robustness Evaluation for Image Classifiers
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Reinforcement Learning 

At each step, the agent:
• Executes action
• Observe new state
• Receive reward

St+1

action 
At

state
St

reward
Rt

Rt+1

Environment

Agent
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Measuring robustness of Black Box image classification (CNN) model
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Measuring robustness : Reinforcement Learning Agent
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Measuring Robustness with Multiple Custom Distortions
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Reinforcement Learning for Adversarial Black Box Attack (RLAB)
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Comparison with SOTA: Natural Distortions relevant to Deployment

• Most state-of-the-art 
competitive solutions use 
unnatural modifications. 

• In contrast, our proposed 
method preserves the true 
nature of the image with 
barely perceptible Gaussian 
noise.

•  Patch Attack's distortion 
measured in L2-norm is 
significantly higher.

• The popular “Square Attack” 
has unnatural color blobs.
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Comparison of RLAB to SOTA for Adversarial Attack 

Attack AVG.Q 𝐿𝐿2 ASR 
Q-Fool [26] 5000 7.52 - 
NES (2018) [14] 1632 - 82.7 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇 𝐷𝐷(2018) [27] 5251 5 80.5 
HopSkipJumpAttack [28] 1000 11.76 - 
Subspace(2019) [29] 1078 - 94.4 
P-RGF𝐷𝐷 (2019) [30] 270.5 - 99.3 
LeBA (2020) [16] 178.7 - 99.9 
Square (2020) [5] 401 5 99.8 
SimBA-DCT (2021) [15] 1665 3.98 98.6 
querynet (2021) [19] - 5 - 
AdvFlow (2021) [20] 746 - 96.7 
EigenBA (2022) [17] 518 3.6 98 
Pixle (2022) [18] 341 - 98 
CG-Attack (2022)[21] 210 - 97.3 
Patch Attack (2022) [16] 983 - - 
RLAB (ours) 169 4.01 100% 

 

Method Inception-v3 VGG-16 
ASR % AVG.Q ASR % AVG.Q 

NES (2018) [14] 88.2 1726.2 84.8 1119 
Bandits𝑇𝑇 𝐷𝐷 (2018) [27] 97.7 836.1 91.1 275.9 
Subspace (2019) [29] 96.6 1035.8 96.2 1086 
P-RGF𝐷𝐷 (2019) [30] 99 637.4 99.8 393.1 
TIMI (2019) [32] 49 - 51.3 - 
LeBA (2020) [16] 99.4 243.8 99.9 145.5 
Sqr. Attack (2020) [5] 99.4 351.9 100 142.3 
SimBA (2021) [15] 99.9 423.3 - - 
querynet (2021) [19] - 518 - - 
AdvFlow (2021) [20] 99.3 694 95.5 1022 
EigenBA (2022) [17] 95.7 968 - - 
Pixle (2022) [18] - - 99 519 
CG-Attack (2022) [21] 100 139 99.4 77 
Patch Attack [16] - - - - 
RLAB(ours) 100 132 100 98 

 

Table1: Comparing 𝐿𝐿2 and average 
queries of the proposed method with 
competitors on the ResNet-50 model 
trained on Imagenet dataset. 

Table 2: Performance comparison of RLAB 
with State-of-the- art methods with Inception- 
V3, and VGG-16 on ImageNet dataset.

Table 3: Evaluation of the proposed 
method with competitors on ResNet-
50 model trained on CIFAR-10 dataset

Tab;e 4: Comparison between Dynamic 
policy driven patch selection and baseline for 
’N’. Dataset: Ima- genet, Model: ResNet-50

Table 5: Ablation study on different patch sizes 
Dataset: Imagenet, Model: ResNet-50

Attack Avg. queries S. Rate 
SimBA-DCT [15] 353 100 
AdvFlow [20] 841.4 100 
MetaAttack [33] 363.2 100 
AdvFlow [20] 598 97.2 
CG-Attack [21] 81.6 100 
EigenBA [17] 99 99.0 
RLAB (ours) 60 100 

 

Approach Average queries Average 𝐿𝐿2 

Dynamic 169 4.03 
Baseline 210 5.62 

 

Patch Size AVG. Q Average 𝐿𝐿2 ASR % 
2x2 179 4.03 100 
4x4 197 11.29 100 
8x8 188 17.52 100 

16x16 133 32.16 100 
32x32 114 63.45 100 
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Robustness Enhancement
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retrain and add robustness to cnn model
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Results: Effectiveness of Re-training for Robustness with SOTA

Robustness comparison of our approach with Square and SimBA attack on ResNet-50 model with different 
datasets. Each attack was evaluated with the same 1000 samples generated from the test set.
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Visual Explanation
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Visual Explanation: Localization Mask with Heat Map

Receptive Field of Convolutional 
Neural Networks

Gaussian Image Pyramid

Localization 
Mask

Localization + Heat 
Map

Original 
Image

Important to understand the reasoning behind a model's predictions and to ensure that decisions are based on relevant features. 

Reinforcement Learning based Architecture Heat Map
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Visual Explanation with RLAB
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Signals and ECG Classification
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ECG Arrhythmia Detection Models: Explainability and Robustness
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ECG Arrhythmia Detection Models: Robustness

Robustness 
goes UP after 

adversarial 
training 

Adversarial SamplesOriginal
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ECG Arrhythmia Detection Models: Explainability
Marking the ROIVisual Explanation
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Video Classification 
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Video Classification: Adversarial Attack for Robustness Evaluation with RL
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Video Classification: Adversarial Attack for Robustness Evaluation with RL
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Video Classification: Adversarial Attack for Robustness Evaluation with RL

Original video (OURS)
Adversarial video 

(SOTA)
Adversarial video
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Adversarial Attack on Videos for Robustness Evaluation with RL

THREAT 
MODELS

EFFECTIVENESS METRICS
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Benchmark and Summary
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Generating Benchmark Dataset for Image Classification with RobustBench 

• Highly reputable resource that tracks the state-of-
the-art in robustness methods

• Robustness methods continuously evaluated 
against select challenging benchmarks

• Our generated benchmarks are experimentally 
demonstrated to be more difficult than those 
comprising RobustBench for state-of-the-art 
robustness methods
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Superior Distortion Generation for Benchmark Dataset for Image Classification
• Higher fidelity & clarity of original images

• Our distortions are better for measuring robustness

• Our distortions enable effective auditing of model failures

Distortions help identify 
points of failure

Over 3x less 
distortion 
needed!
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Superior Distortion Generation for Benchmark Dataset for Image Classification

• Our benchmark generator more effectively identifies robustness issues than prior benchmarks

• Effective for multiple types of distortions and levels of distortion

• Experiments show the state-of-the-art is still susceptible to real-world distortions

>45% drop >70% drop

>13% drop>7% dropEven the most sophisticated 
defenses exhibit robustness 
limitations
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Reinforcement Learning for Robustness Evaluation, Enhancement, and Explanation

Add 
Distortion

Image 
Classification 

Model 

Smart ML Test 
Agents

Modified 
Training Data

Classification 
Results

Mis-classification

Robustness Evaluation

Cougar Wild Cat

Inner 
Model 

Analysis 
Loop

Generated 
Adversarial 

Training Data

Model Refinement to Enhance Robustness

Trigger for Re-
training

Model 
Re-training

Outer 
Model 

Synthesis 
Loop

Explainability

Important to understand the reasoning behind a model's predictions and to ensure that decisions are based on relevant features. 
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Works for Signals and Images 
of different dimensions
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Publications

 Robustness With Query-Efficient Adversarial Attack Using Reinforcement Learning: 

 CVPR 2023 workshop proceedings   

 https://tinyurl.com/y2yvckp5

 RL-cam: Visual explanations for convolutional networks using reinforcement learning: 

 CVPR 2023 workshop proceedings  

 https://tinyurl.com/2skw93pw

 Benchmark Generation Framework With Customizable Distortions for Image Classifier Robustness: 

 WACV 2024 proceedings  

 https://tinyurl.com/38hwsst8

 RTDK-BO: High Dimensional Bayesian Optimization with Reinforced Transformer Deep kernels: 

 IEEE CASE 2023 proceedings 

 https://ieeexplore.ieee.org/abstract/document/10260520
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 Evaluating LLMs for Trust

 Refining LLMs for Trust

Tune in for our work on Trust for LLMs 
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