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Vulnerability of ML models and Measuring Trustworthiness

In Machine learning models a small perturbation of data may cause a model to misclassify

Increased Regulations for Machine Learning usage will require algorithmic audit and measurement of Trustworthiness

Test data sets used are limited to static testing and are unable to catch real world distortions or adversarial attacks

As ML models are complex, we need smart ML agents to analyze ML models
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RLAB: Measuring robustness of image classification (CNN) Model

Dataset: Caltech 101 | Image Classification Model: Resnet50
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ML to test robustness of image classification model

Why do we need it ?

* Robustness of Machine Learning models is key for
Trustworthiness

* Robustness of ML models is key for ensuring
consistent classification accuracy with variations in
input data and is an important element of
trustworthiness.

e Quantitative meftric for robustness and can be used
for algorithmic audit for trustworthiness

What do we need it to do ?

We model perturbations that occur naturally at deployment because
of distortions from camera or from adversarial attacks.

To tackle the complexity of ML models, Hewlett Packard Labs
developed Reinforcement Learning based smart agents to evaluate
robustness of ML models, by finding the minimum distortion needed
for misclassification.

RLAB - Reinforcement Learning based Adversarial Black-box attack,
is HPE Lab’s Platform for measuring robustness and other aspects of
Trustworthy Al

For robustness with image classification models, RLAB supports
several types of naturally occurring distortions like Gaussian noise,
Gaussian blur, and dead pixels.

This technique can help refrain the ML models to enhance

robustness a1gains’r outliers.
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Reinforcement Learning

Agent
At each step, the agent:
. * Executes action
action * Observe new stafe
A, * Receive reward
Environment
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Measuring robustness of Black Box image classification (CNN) model
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Measuring robustness : Reinforcement Learning Agent

Distortion in

the mouth area Robustness Evaluation . .
Cougar Wild Cat
Validation . I Image
Data / Modified Validation - Classification - Mis-classification
Data / Images
Images Model
,"\\
/ \
Add RL ll \
. I
Distortion . / RL Reward
Action . ./
<
Smart ML Test Classification
Agents RL Results
States

: Trustworthy Al from Hewlett Packard Labs @ Hewlett Packard Enterprise | 10



Measuring Robustness with Multiple Custom Distortions

Original Image

Distortion Added

L2 Distance: 1.16

Dataset: ImageNet | Image Classification Model: Resnet50
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Reinforcement Learning for Adversarial Black Box Attack (RLAB)

AProb Dilution for GT / AL2-Distance Reward
Altered vs Previous image
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Comparison with SOTA: Natural Distortions relevant to Deployment

Original Patch Patch Attack RLAB RLAB (ours)
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Comparison of RLAB to SOTA for Adversarial Attack

Table 3: Evaluation of the proposed
method with competitors on ResNet-
50 model trained on CIFAR-10 dataset

Tablel: Comparing L, and average Table 2: Performance comparison of RLAB
queries of the proposed method with with State-of-the- art methods with Inception- Attack Avg. queries | S.Rate
competitors on the ResNet-50 model V3,andVGG-16 on ImageNet dataset. SimBA-DCT [I5] 353 100
trained on Imagenet dataset. AdvFlow [20] 841.4 100
Method Inception-v3 VGG-16 MetaAttack [33] 363.2 100
Attack AVG.Q | L ASR ASR% | AVGQ | ASR% | AVG.Q AdvFlow [20] 598 972
Q-Fool [26] 5000 | 752 : NES (2018) [14] 882 | 17262 | 848 | 1119 CG-Attack [21] 81.6 100
NES (2018) [14] 62 | - | &7 Banditsyp (2018) [27] | 977 | 8361 | 911 | 2759 EigenBA [17] 2 22.0
Banditsy p(2018) [27] | 5251 5 | 805 Subspace (2019) [29] | 966 | 10358 | 962 | 1086 RLAB (ours) 60 100
HopSkipjumpAttack [28] 1000 | 1176 | - P-RGF) (2019) [30] 99 6374 | 98 | 393.
Subspace(2019) [29] 1078 - | 944 TIMI (2019) [32] 9 |- 513 | - Tabse 4: Comparison between Dynamic
P-RGFp (2019) [30] 270.5 - 993 LeBA (2020) [16] 994 | 2438 | 999 145.5 policy driven patch selection and baseline for
LeBA (2020) [16] 1787 - | 999 Sqr. Attack (2020)[5] | 994 | 3519 | 100 | 1423 'N'. Dataset: Ima- genet, Model: ResNet-50
Square (2020) [5] 401 5 99.8 SimBA (202 |) [| 5] 99.9 4233 - - Approach Average queries Average LZ
SimBA-DCT (2021) [15] 1665 | 398 | 986 querynet 2021)[19] | - 518 | - i Dynamic 169 403
querynet (2021) [19] i 5 i AdvFlow (2021) [20] 93 | 694 955 | 1022 Baseline 210 5.62
AdvFlow (2021) [20] 746 - 9.7 EigenBA (2022) [17] 957 | 968 - -
EigenBA (2022) [17] 518 3.6 %8 Pixle (2022) [18] - - 99 519 Table 5: Ablation study on different patch sizes
Pixle (2022) [18] 341 - 98 CG-Attack (2022) [21] 100 139 994 77 Dataset: Imagenet, Model: ResNet-50
CG-Adtack (2022)[21] 210 - | 973 Patch Attack [16] - - - - PatchSize | AVG.Q | AverageL, | ASR %
Patch Attack (2022) [16] 983 - - RLAB(ours) 100 132 100 98 ™) 179 203 100
RLAB (ours) 169 401 100% '
4x4 197 11.29 100
8x8 188 17.52 100
16x16 133 32.16 100
32x32 [14 63.45 100
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RobusinessEnha ncement
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retrain and add robustness to cnn model
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Results: Effectiveness of Re-training for Robustness with SOTA

Classification Error (%) with Re-training

Dataset Evaluated SimBA Adv | Square Adv || RLAB Adv
Against | Training Training Training
CIFAR-10 SimBA - 99.80 7.81
CIFAR-10 Square 55.83 - 51.61
CIFAR-10 RLAB 88.60 97.80 -
Caltech-101 SimBA - 2:15 1.37
Caltech-101 Square 32.77 - 28.75
Caltech-101 RLAB 75.00 75.04 -

Robustness comparison of our approach with Square and SimBA attack on ResNet-50 model with different

datasets. Each attack was evaluated with the same 1000 samples generated from the test set.

—

Trustworthy Al from Hewlett Packard Labs @ Hewlett Packard Enterprise | 17




 Visual Explanation
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Visual Explanation: Localization Mask with Heat Map

Important to understand the reasoning behind a model's predictions and to ensure that decisions are based on relevant features.
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Visual Explanation with RLAB
Original Image Ours Grad-CAM  Ablation-CAM Eigen-CAM

Trustworthy Al from Hewlett Packard Labs @ Hewlett Packard Enterprise | 20



 Signals and ECG Classification ~
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ECG Arrhythmia Detection Models: Explainability and Robustness

|
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Other Atrial Fibrillation Normal sinus

Noise

ECG Arrhythmia Detection Models: Robustness

|
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Noise Type Seg-length (ms) | AVGQ | AVG Ls ASR
10 14.54 3.40 100%

16.67 16.96 3.70 100%

Motion Artifact 3333 30.86 4.81 100%
50 17.90 5.05 100%

(10, 16.67) 20.88 3.20 100%

(16.67, 33.33) 28.02 3.46 100%

333 4.58 8.37 100%

6.66 2.36 11.27 100%

Detached Device 10 3.12 12.94 100%
(3.33, 6.66) 2.26 10.71 100%

(6.66, 10) 248 11.68 100%

Avg Lo and Q represent the average .2 and queries over all samples, respectively.

* ms stands for milliseconds.

Average L2 and Queries as a measure of Robustness of
the ResNet model trained on PhysioNet Challenge 2017

dataset, WITHOUT the Adversarial ECG signals.

We see lower metrics.

Noise Type Seg-length (ms) [ AVG Q | AVG Lo ASR
10 85.101 3.90 100%

16.67 61.341 441 100%

Motion Artifact 33.33 33.861 5.32 100%
50 27.707 5.54 100%

(10, 16.67) 40.30T 4.09 100%

(16.67, 33.33) 42.741 4.78 100%

3.33 5.22¢ 14.28 100%

6.66 4287 18.24 100%

Detached Device 10 3.147 18.67 100%
(3.33, 6.66) 4787 16.36 100%

(6.66, 10) 3.301 18.16 100%

Avg Lo and Q represent the average L2 and queries over all samples, respectively.
*ms stands for milliseconds.

Average L2 and Queries as a measure of Robustness of the
ResNet model trained on PhysioNet Challenge 2017 dataset,

WITH the Adversarial ECG signals.
We see higher metrics indicating improved Robustness.
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Marking the ROI
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ECG Arrhythmia Detection Models: Explainability
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 Video Glassficaion

: Trustworthy Al from Hewlett Packard Labs @ Hewlett Packard Enterprise | 25



Video Classification: Adversarial Attack for Robustness Evaluation with RL

Spatial and Temporal rewards
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Video Classification: Adversarial Attack for Robustness Evaluation with RL
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Video Classification: Adversarial Attack for Robustness Evaluation with RL

(OURS) (SOTA)

Original video Adversarial video Adversarial video
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Adversarial Attack on Videos for Robustness Evaluation with RL

EFFECTIVENESS METRICS
HMDB-51 UCE-101
THREAT Attack Methods MAP ] |ON | [SR T | MAP I [ON [ [ SR ©
MODELS Heuristic attack 5.043 10385 58 5.956 10657 40
Motion-sampler attack 7.229 3911 90 7.237 5187 83
1 GEO-TRAP attack 5.919 3164 92 5.865 3782 88
TSM [5] RLSB attack 5.323 5950 82 4.823 4898 87
AstFocus attack 3411 1529 100 3.355 1138 96
| Ours (GB) 0.835 921 83 0.735 863 85
) 1,824 | 600 90 | 2.49] 306 94
Heuristic attack 5.395 10146 58 5.265 9135 51
Motion-sampler attack 7.275 3667 88 6.895 4744 78
GEO-TRAP attack 5.192 3392 88 5.472 3782 75
TSN [Y] RLSB attack 5.312 4217 92 5.238 3504 93
AstFocus attack 3.520 2198 96 3.265 2015 99
Ours (GB) 0.677 8433 96 0.676 3243
Ours (DP 2.373 238 98 2417 373
Heuristic attack 4.838 10534 4 6.295 14160 30
Motion-sampler attack 7.035 6491 63 6.153 8132 62
GEO-TRAP attack 5.666 5082 34 5.877 7045 75
C3D [10] RLSB attack 4.688 7279 6 5.326 6568 68
AstFocus attack 3.835 3628 o 4.015 4224 90
Ours (GB) 0.835 | 8710 2258 | 1783
Ours (DP
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Be nchmarkand Summa ry
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Generating Benchmark Dataset for Image Classification with RobustBench

@

A standardized benchmark for adversarial robusiness

Highly reputable resource that tracks the state-of-
the-art in robustness methods

Robustness methods continuously evaluated
against select challenging benchmarks

Our generated benchmarks are experimentally
demonstrated to be more difficult than those
comprising RobustBench for state-of-the-art
robustness methods

—

ML Model

Robustness
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Superior Distortion Generation for Benchmark Dataset for Image Classification

* Higher fidelity & clarity of original images

* Our distortions are better for measuring robustness

* Ourdistortions enable effective auditing of model failures

//
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Original
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Q Q
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(@) H H (@)
E points of failure E Over 3x less
— distortion
needed!
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Superior Distortion Generation for Benchmark Dataset for Image Classification

* Our benchmark generator more effectively identifies robustness issues than prior benchmarks
* Effective for multiple types of distortions and levels of distortion

* Experiments show the state-of-the-art is still susceptible to real-world distortions

Distortion: Blur Distortion: Noise

B State-of-the-Art 2022

L
g >45% drop >70% drop Dataset
b mmm Original
% mmm Prior Benchmark
L state-of-the-Art 2023 ww Ours
Even the most sophisticated _1 >7% drop >137% drop

defenses exhibit robustness ' '

I | I |
. . . 0.2 0.4 0.6 0.8 0.25 050 0.75
limitations Accuracy Accuracy
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Reinforcement Learning for Robustness Evaluation, Enhancement, and Explanation

Important to understand the reasoning behind a model's predictions and to ensure that decisions are based on relevant features.

Works for Signals and Images Me Refinement to Enhance Robustness Original Image —
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Publications

U Robustness With Query-Efficient Adversarial Attack Using Reinforcement Learning:
+* CVPR 2023 workshop proceedings
s https://tinyurl.com/y2yvckp5
L RL-cam: Visual explanations for convolutional networks using reinforcement learning:
+* CVPR 2023 workshop proceedings
** https://tinyurl.com/2skw93pw
L Benchmark Generation Framework With Customizable Distortions for Image Classifier Robustness:
s* WACV 2024 proceedings
¢ https://tinyurl.com/38hwsst8
O RTDK-BO: High Dimensional Bayesian Optimization with Reinforced Transformer Deep kernels:
+** |[EEE CASE 2023 proceedings

s https://ieeexplore.ieee.org/abstract/document/10260520
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Tune in for our work on Trust for LLMs

J Evaluating LLMs for Trust

J Refining LLMs for Trust
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Thank you
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