

Optimizing deep neural network inference workloads

Lindsey Hillesheim, Head of HPE Tech Advance Program Hana Malha, Al Technologist at HPE

November 15, 2023

Agenda

- 1. Motivation
- 2. Overview of optimization methods
- 3. Generative AI & LLMs

Training vs. Inference

Apples & Oranges

Inference & training drive different system requirements

Inference occurs at edge and core

Key performance metrics for inference

Important Metrics for Inference				Other Factors (Production & Long Term)		
\$	4				OS	
Cost	Power	Throughput	Latency	Scalability	OS Support	Software Stack
Total \$	Total Watts	Total Inf/Sec	Total Time (single inference)			
Performance/\$ & TCO	Performance/W & TCO	Performance/\$ Performance/W & TCO	Time to Decision (Single threaded)	Large models Many Params	Market Adoption	TCO & Market Adoption

Which metrics matter vary by application.

Meeting metrics = ROI

Why should you care about inference optimization?

Optimize a model to target HW **that meets KPIs at development time** with fewer iterations

Choose alternative hardware for inference workloads due to HW cost

Optimization approach that works **across** use cases from edge to core

Inference Optimization Methods

Converting Model (graph) to Machine Code Optimizing, Lowering

Optimally feeding the Accelerator

Batching, model caching

Vendor specific drivers

Target selection

Heterogenous/multi-device execution

Quantization

- FP32 to 8bits or lower
- PTQ, QAT, ...

Pruning: Eliminate nodes **Quantization***: Reduce Precision **Knowledge Distillation** (require retraining) Converting Model (graph) to Machine Code Optimizing, Lowering Optimally feeding the Accelerator Batching, model caching **Vendor specific drivers** Target selection Heterogenous/multi-device execution

Inference optimization: technology taxonomy

- Hardware Aware
- MAY be done
- Accuracy sensitive

- Hardware Specific
- MUST be done
- Accuracy invariant

Inference optimization: start-up, OSS & vendor landscape

Generative AI / Large Language Models

Elephant in the room: What happens when the DNN gets really big?

Key inference differences for Gen AI models

- Inference is more complex
- Model performs several inference iterations to generate a new sample
- Ex: Text is generated token by token.

- Each inference requires more compute due to model size & iterative nature.
- A lot of infrastructure required to maintain high availability and low latency when demand spikes.

- Content generated depends on users' prompt so cost per prompt is not constant
- Difficult to estimate and predict cost of running and scaling models in production.

Generative AI: Biggering and biggering

Time

2 mo

For Chat GPT to reach 100 million active users¹ Cost

\$40m

Estimated costs for Open AI to process prompts in January²

Infrastructure

\$4b

Required infrastructure to support serve Microsoft's Bing Al chatbot² **CO2** emissions

2%

Share of global CO2 emissions attributed to the Information and Communications
Technology (ICT) sector in 2020³

¹ https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/

² https://www.cnbc.com/2023/03/13/chatgpt-and-generative-ai-are-booming-but-at-a-very-expensive-price.html

https://www.spiceworks.com/tech/artificial-intelligence/guest-article/hidden-costs-of-generative-ai/

Hardware resources bottleneck

Host memory Mem usage **Mem BW** Host processor **Profiling & Monitoring** PCle Traffic Cores allocation Power Host activity **FLOPS** Storage traffic

- ✓ Saving memory space/bw (FP32/16 to 8bits or lower)
- ✓ Compute: lower bit / faster arithmetic

LLM Inference optimization

- Hardware Aware
- MUST be done
- Accuracy sensitive

- Hardware Specific
- MUST be done
- Accuracy invariant

Key Takeaways

Inference workloads are complex

 Inference workload profiles depend on the model, underlying software, and hardware.

Multiple Methods

 Multiple software optimization methods are needed to get large performance gains.

Performance, Power, TCO

 Optimization can improve performance and allow inference to be run on lower TCO hardware.

Parka not Lipstick

• Inference optimization is not lipstick on the model; it is the snow parka when it is -5 F.

Thank you

lindsey.hillesheim@hpe.com hana.malha@hpe.com

Creating a curated and trusted innovation ecosystem

HPE Tech Advance Mission

We build deep partnerships with the most innovative & promising technology and solution providers in data, edge, sustainability, and AI to address current and emerging HPE customer needs.

To build a trusted and mutually beneficial relationship, we take a phased approach.

Assess	Evaluate	Pilot	Expand	
Assess mutual interest and strategic fit	Evaluate technology and business fit	Pilot & de-risk joint offerings	Expand the partnership	