
Observability in Action
Unify your Log, Tracing, Event, & Performance Telemetry Data
to enrich your IT Operations Monitoring & Event Management

Why OpsRamp?

3

VIRTUALIZATION

DATABASE

STORAGE
and

BACKUP

NETWORK
SERVER

APPLICATION

Escalating Costs

Reactive

Disconnected Legacy Tools

Lack of Visibility

Growing Expectations

© 2023 OpsRamp all rights reserved

ON-PREMISES
Siloed IT Teams &

Business Units

MULTI-CLOUD
Cloud Service Providers &

Cloud Native Tools

ITOM Use Cases
Productive, Efficient, and Proactive

4

Do more
• Automate IT processes to

make every moment easier
• Help ITOps teams to be

more efficient, increase
service quality, reduce
redundant activities, and
ensure audit or compliance
policies

Intelligent
Automation

Know more
• Detect and resolve issues

faster
• Leverage the power of

machine learning and
process automation
to manage critical alerts,
detect incidents, and
resolve them proactively

AI-driven event &
incident management

See more
• Discover, observe, and

optimize your hybrid IT
environment

• Bring server, storage,
network, virtualized, cloud,
containerized, and application
visibility and performance
together in a single, unified
point of view and control

Hybrid
Observability

5

Part 1:

Journey to Observability

6

Let’s Take A Closer Look

OpsRamp Hybrid Observability

7

Current
State

Target
State

Improve CX/UX, visibility & availability
of business services

2
AI-Driven Event & Incident Management

Rapid troubleshooting of application
performance to reduce MTTD/MTTR

Intelligent Automation

1

3

Key Initiatives

Private Cloud

Digital
Transformation

ITSM
Transformation

Journey to Observability

Hybrid Observability

Rapid troubleshooting of application
performance to reduce MTTD/MTTR

Improve Observability
with OpsRamp

8

01 05

02 04

03Increased visibility across
hybrid environments

Deeper context of
end-user experience

Cut through the noise
and troubleshoot faster

Unified approach to
incident response

Quickly isolate the
cause of an issue

OpsRamp
Observability © 2023 OpsRamp all rights reserved

Improve Observability
with OpsRamp

9

01 05

02 04

03Increased visibility across
hybrid environments

Deeper context of
end-user experience

Cut through the noise
and troubleshoot faster

Unified approach to
incident response

Quickly isolate the
cause of an issue

OpsRamp
Observability © 2023 OpsRamp all rights reserved

10

Data Center

Multi-Cloud

Metrics

Events

Traces

Logs

See all health and
performance data in one
place, with context.

HYBRID
OBSERVABILITY

Reduce noise and make
the right decision, faster.

AI-DRIVEN EVENT
& INCIDENT

MANAGEMENT

Act faster and
more efficiently.

INTELLIGENT
AUTOMATION

AIOps

ResolutionDiscovery

Improve ITOps and
Business Alignment

Understand Resource
Dependencies

Detect and Resolve
Incidents Faster

Improve Governance,
Uptime & Reliability

Save Time
and Costs

Centralize and
Simplify Monitoring

Hybrid Command Center for Digital Ops

Improving Observability

© 2023 OpsRamp all rights reserved

01 05

02 04

03
Proactive IT Operations
Be the first to know about issues

Improve responsiveness

Enhance collaboration with service desk

Enhance Productivity
Eliminate swivel chair monitoring

Systematic automation

Accelerated learning

IT Asset Efficiency
Consolidation of tools

Optimize IT asset utilization

Maximize team resources + satisfaction

Accelerate ROI & Value
Streamline and rationalize ITOM

Automate for efficiency & governance

Improve service levels & CX

Innovate Faster
Scale to support a hybrid delivery model

Accelerate adoption of new technologies

Drive modern use cases

11

Comprehensive and Extensible

2500+ Integrations Supported

12

APPLICATIONS DATABASE

OS

VIRTUALIZATIONCLOUDSTORAGE

ITSM

SSO

3RD PARTY EVENTS

NETWORK

13

AIOps

Intelligent Alerting & Event Management

Alert
Escalation

First
Response

Auto Remediation
Alert

Correlation

Normalization
Engine

Native Instrumentation
Resources,Topology,

Metrics, Events

3rd Party Tool
Events, Alerts

“ OpsRamp has taken the chaos out of our infrastructure.”
– VP of Infrastructure Delivery, Epsilon

14© 2023 OpsRamp all rights reserved* Traces currently in Beta for Q2 ’23 Release

Detect Potential Issues

Identify Probable Root Cause

Take Immediate Action

Resolve Incidents Faster

DETECT & RESOLVE POTENTIAL AVAILABILITY, LATENCY, & PERFORMANCE ISSUES – FASTER!

Log Management + Monitoring & Event Mgmt.

Cassandra, custom
apps

Data Exchange Between:
OpsRamp Cloud and Customer Infrastructure

15

Outbound TCP

Port 443

Existing Tools ITSM APM

Outbound TCP

Port 3128

SNMP / API

TLS1.2
Port 443

Port 443

Network
Storage
Virtual Infrastructure
Synthetics

Servers
Kubernetes
Applications

O
psRam

p
G

atew
ay

O
psRam

p
G

atew
ay

O
psRam

p
G

atew
ay

Existing API Integrations

Custom API Integrations

Legend

OpsRamp
Gateway

OpsRamp
Agent

Customer Environment

Secure
Encryption

© 2023 OpsRamp all rights reserved

16

● Complete Visibility into event, logs, and trace
data points to help improve alert correlation and
isolate probable root cause.

● Centralize & Standardize the collection and
maintenance of logs.

● Reduce Costs by consolidating tools and more
quickly reducing the impact of downtime.

● Simplify IT Ops & Improve Performance
by centralizing monitoring, log analysis, and
automating remediation from your existing OpsRamp
command center.

COMPLETE OBSERVABILITY ACROSS YOUR HYBRID ENVIRONMENT

OpsRamp Log Management

Easily Ingest, Process & Analyze Log Data
from Virtually Any Source

Log Viewer
Centralize and simplify log analysis.

• Automatically parse logs
• Search and filter log data
• Save log views

Alert Definitions
Customize notifications to your business.

• Trigger alerts based on data patterns.
• Create custom log alerts
• View usage consumed

Log Archiving
Easily store logs for auditing purposes.

1

2

3

4

17

COMPLETE OBSERVABILITY ACROSS YOUR HYBRID ENVIRONMENT

OpsRamp Log Management

18

Application Transaction Triggers

Webpage Sign-In / Sign-out Requests

Application Access Audits

IP Address Source & Destination

during transaction

Network / System Audit

API Calls – Success / Failure

Cloud Services Audit Logs

Hardware & Software Changes

Unified agent includes discovery, monitoring, automation, patch management,
remote consoles sessions & now Log Streaming.

INSTRUMENTATION

Log Collection

Configuring Agent Log Collectors

19

Deploying The Agent

VM Agent:

1. dpkg -i <opsramp-agent-deb-pkg>

2. sudo /opt/opsramp/agent/bin/configure -K <clientKey> -S

<clientSecret> -s <apiserver> -M true -L True -T <LogEndpoint>

K8s Agent:

1. Additional Env variables to deployment yaml:

ENABLE_LOG_MANAGEMENT

LOG_MANAGEMENT_ENDPOINT

2. Additional mount paths for /var/log for k8s worker agent

Capture Logs from Custom Applications

• Configure custom application logs in custom log

config file and then restart the agent service

/opt/opsramp/agent/conf/log.d/log-config.yaml

• Sample config file so user can easily modify the file

log-config.yaml.sample

• If configured, Agent will give priority to the custom

config (over default config) to start log collection.

NOTE: Install OpsRamp agent on Windows / Linux servers for Log Forwarding features to be enabled.
Agent Installation documentation provides additional detail for enabling Log Forwarding.

For Cloud Provider Logs no agents are required.

Create Permission Sets

20

• Create a new permission set with “Log View” enabled
• Current roles are updated with new log enabled permission sets
• “User” to re-login into OpsRamp to visualize log management workspace under infrastructure

21

Ingest From Virtually Any Source
• To view supported “Log Sources”, select “Infrastructure → Logs → Getting Started”
• To start ingesting Logs, click on your required technology.

22

Ingest Logs From Source
• Select technology type, then follow instruction for ingesting logs into OpsRamp.
• To visualize logs collected and indexed by OpsRamp, select “Infrastructure → Logs → Explore”.
• To create custom views of required log conditions, select ”+ ADD FILTER”.

23

Ingest Logs From Source
• Enable monitoring of logs with “Log Alert Definitions” within extension to Log Analysis.
• Navigate to “Setup → Monitoring → Log Alert Definitions”
• View monitoring results while creating alert conditions within real-time query builder.

Query Builder

Alert Condition

24

Alert from “Log Alert Definitions” ~ sample

25

Let’s Take A Closer Look
OpsRamp AI-Driven Event & Incident

Management

26

Observability Roadmap Journey for Success

27

28

Let’s Take A Closer Look

OpsRamp Intelligent Automation

29

Getting Started
with OpsRamp Tracing Solution

Complete guide

Internal Documentation - Not to be shared with Customers

Contents

● Introduction to Tracing
● OpsRamp Tracing

○ How Trace Ingestion happens in OpsRamp
○ Trace Proxy - Configurations / Functionalities / Metrics / Insights

● How to Setup Tracing Demo environment ? - Demo
○ Deploying Demo Application (Which is already instrumented) - VM / K8s
○ Deploying / Configuring Trace Proxy
○ Configuring Demo Application to send traces to trace proxy
○ Analyzing Traces / Trace Insights in OpsRamp

● How to Instrument an Application to send Traces - Demo

Observability - Three pillars

Observability is the ability to understand the inner
state of your evolving systems by examining and
analyzing all available data outputs like logs, traces
& metrics in real time.

In a nutshell, having observability on your
application allows you to understand what, how,
and why a malfunction has occurred.

Monitoring Vs Observability : While monitoring
tracks the system’s health of your application,
observability tells you why it’s performing a certain
way.

Introduction

OpsRamp Tracing solution provides end-to-end visibility into user transactions across
services, as well as seamless integration into performance metrics and logs to
accelerate issue resolution and root-cause analysis.

OpsRamp Tracing solution supports the OpenTelemetry standard and is built to use
OpenTelemetry, to provide a standardized, vendor-agnostic, and industry-standard
solution for distributed tracing.

Note: Solution has some TO-DO items to make it complete. So refer to the last section of doc for upcoming features.

What is Distributed Tracing ?

Distributed Tracing is a technique which allows you to trace and track requests as
they flow through different services or components in a distributed architecture.

By capturing and correlating trace data from multiple services, distributed tracing
provides insights into the performance, latency, and dependencies between
different parts of a system.

What is Opentelemetry ?

OpenTelemetry is a vendor-agnostic instrumentation library per language to
generate, emit, collect, process and export telemetry data.

Our Tracing Product is built to use OpenTelemetry, to provide a standardized,
vendor-agnostic, and industry-standard solution for distributed tracing.

For more details refer official doc here

https://opentelemetry.io/docs/instrumentation
https://opentelemetry.io/docs/concepts/what-is-opentelemetry/

What is a Trace ?

A trace represents the path of a single request or transaction as it traverses through
various services.

It consists of a collection of spans, where each span represents a specific operation or
activity within a service.

A trace record usually consists of additional context like:

 - latency of a API request
- Time taken to connect to a database
- Time taken for a function in code
- Time taken for a query to execute
& more depending on the operation performed.

Trace

Spans

Each span represents a specific
operation or activity within a
service.

Spans are connected to form a
tree-like structure, representing
the parent-child relationships
between different operations.

Service / Operation

Every span consists mainly of the following components displayed in the
illustration

Service
service name is usually the name of the microservice or module the span
is representing

Operation
Operation name is the name of the action that the span is representing

Parent ID
It’s the unique identifier of its parent span which encloses the current
span. Parent ID is usually empty for root spans and such spans which
don’t have any parent id are considered the starting point any trace

Attributes
It comprises of additional metadata

Terminology - At a glance

Request

User action which
triggers the generation

of a trace.

Example: a user tries to
checkout their cart on an e-

commerce website.

Span

Smallest unit of work
within a distributed

system, capturing details
such as timing, unique

identifiers, and metadata
for a specific operation.

Examples: API calls, HTTP calls,
cache calls, database calls, etc.

Trace

Lifecycle of a request
made by a user. A trace

consists of multiple spans.
Tracks all the calls that
were made and time

taken.

Example: A user clicks
“Checkout Cart”. This causes
the following calls: checkout
service → product catalog

service → payment service →
database service.

Service

A distinct component
that performs a specific

set of functions.

Examples: Frontend service,
payment service, database
service, recommendation

service, etc.

Operation

Under each service, the
actual individual functions.

Examples: For a frontend
service, we could have “Add to
Cart”, “View Cart”, “Checkout”,

etc. operations!

OpsRamp Tracing - Different Components

- Trace Proxy: It is OpsRamp trace collector where all the traces from a customer's
application are aggregated, down-sampled and exported to OpsRamp.

- Traces UI: Traces Explorer UI to visualize the traces and Trace Insights computed
from the metrics collected by Trace Proxy.

How Trace Ingestion in OpsRamp works ?

Application - Trace Instrumentation

➢ In order to make a system observable, it must be instrumented: That is, the
code must emit traces, metrics, and logs.

➢ Without being required to modify the source code you can collect telemetry
from an application using Automatic Instrumentation.

➢ To facilitate the instrumentation of applications even more, you can manually
instrument your applications by coding against the OpenTelemetry APIs.

https://opentelemetry.io/docs/concepts/observability-primer/
https://opentelemetry.io/docs/concepts/observability-primer/
https://opentelemetry.io/docs/concepts/observability-primer/
https://opentelemetry.io/docs/reference/specification/glossary/
https://opentelemetry.io/docs/reference/specification/glossary/
https://opentelemetry.io/docs/reference/specification/glossary/

Application - Trace Instrumentation Contd..

Note, that for most languages it is possible to use both manual and automatic instrumentation at the
same time: Automatic Instrumentation will allow you to gain insights into your application quickly
and manual instrumentation will enable you to embed granular observability into your code.

Next, you can deep dive into the documentations for the language you are using:

● C++
● .NET
● Erlang / Elixir
● Go
● Java
● JavaScript / TypeScript

● PHP
● Python
● Ruby
● Rust
● Swift

For detailed examples for each programming language with sample instrumented code, please refer doc
https://github.com/opsramp/tracing-docs

https://opentelemetry.io/docs/instrumentation/cpp/
https://opentelemetry.io/docs/instrumentation/net/
https://opentelemetry.io/docs/instrumentation/erlang/
https://opentelemetry.io/docs/instrumentation/go/
https://opentelemetry.io/docs/instrumentation/java/
https://opentelemetry.io/docs/instrumentation/js/
https://opentelemetry.io/docs/instrumentation/php/
https://opentelemetry.io/docs/instrumentation/python/
https://opentelemetry.io/docs/instrumentation/ruby/
https://opentelemetry.io/docs/instrumentation/rust/
https://opentelemetry.io/docs/instrumentation/swift/

Trace Proxy

Trace Proxy is an application that collects spans emitted by your application,
downsamples them based on sampling rules, and generates several useful trace
metrics.

It is designed to sit within your infrastructure as a single deployment or a cluster of
multiple trace proxy services. In the case of multiple trace proxy services, the proxy
containers/processes must be able to communicate with each other to consolidated
traces.

https://opentelemetry.io/docs/concepts/signals/traces/

Trace Proxy - Design

Trace Proxy - Functionalities

● Trace Metrics

○ Golden signals: Latency, Errors, Operations/sec

○ Other metrics: Operations failed/succeeded, span counts, duration, etc.

○ Include/Exclude Metrics

● Downsampling

● Deployment Methods: Kubernetes or Host Based Deployment

● Clustering & Peer Management

Trace Proxy - Document links

● Trace Proxy Configuration

● Supported Sampling Methods

● Metrics Collected by Trace Proxy : List

● Trace Insights : Queries

● Github

https://drive.google.com/file/d/1mMeBV-H_CCnJCP36VWTRcZ_0HLx5QT6-/view?usp=drive_link
https://drive.google.com/file/d/14nUOwItA17MDiL35Lj_rPhmnWYFmWoLm/view?usp=drive_link
https://drive.google.com/file/d/1PwIEobnQR-kFbm6mPPFVm3NTYyGDzV9-/view?usp=drive_link
https://drive.google.com/file/d/1FgZ-Nu5q6eAAqw49rFBsU_ap7o8oObbH/view?usp=drive_link
https://github.com/opsramp/tracing-proxy/blob/main/config_complete.yaml

Trace Proxy - Sampling Methods

● Deterministic Sampler is a static sample rate, choosing traces randomly to either
keep or send.

● Dynamic Sampler will adjust the sample rate of traces and events based on their
frequency.

● Exponential Moving Average (EMA) Dynamic Sampler maintains an Exponential
Moving Average of counts seen per key, and adjusts this average at regular
intervals.

● Rule-Based Sampling allows you to define sampling rates explicitly based on the
contents of your traces.

● Throughput-Based Sampling meet a goal throughput rate of a fixed number of
spans, not traces, per second per trace-proxy node.

Tracing Demo Setup - Guide

● Deploying Demo Application (Which is already instrumented) - VM / K8s

● Deploying / Configuring Trace Proxy

● Configuring Demo Application to send traces to trace proxy

● Analyzing Traces / Trace Insights in OpsRamp

Deploying OpsRamp Trace Proxy

Navigate to Trace Getting Started Page in Portal

1. Select Traces from infrastructure tab

1. Click on the hamburger menu on the
top left side of the page and
select “Traces Configuration”

Deploying OpsRamp Trace Proxy

3. Follow the onscreen instructions to deploy the trace proxy

Setting Up Demo App In VM

We will be using a sample spring application with java auto instrumentation for traces for this example
Prerequisites

● Have Java 17 or higher installed
Setup

Clone the repository for petclinic project
git clone https://github.com/spring-projects/spring-petclinic.git

move into that directory & run the mvnw command
cd spring-petclinic
./mvnw package

Download the opentelemetry java agent for auto-instrumentation
wget https://github.com/open-telemetry/opentelemetry-java-instrumentation/releases/latest/download/opentelemetry-javaagent.jar

Running
For exporting traces via GRPC
java -javaagent:opentelemetry-javaagent.jar \
-Dotel.exporter.otlp.endpoint=http://localhost:9090 \
-Dotel.resource.attributes=service.name=PetClinicSampleApp \
-jar target/*.jar

For exporting traces via HTTP
java -javaagent:opentelemetry-javaagent.jar \
-Dotel.exporter.otlp.traces.protocol=http/protobuf \
-Dotel.exporter.otlp.endpoint=http://0.0.0.0:8082 \
-Dotel.resource.attributes=service.name=PetClinicSampleApp \
-jar target/*.jar

Setting Up Demo App In VM …….Contd

Petclinic application web ui is accessible at localhost:8080 once the we run the command and each
operation performed here results in a new trace

Setting Up Demo App in Kubernetes (YAML)

We will be using Open Telemetry Demo application for
Kubernetes

It can be installed using normal kubernetes deployment
files or using Helm

Deployment Using Normal YAML
To export Traces to OpsRamp Tracing Proxy the
following configuration needs to be added to ConfigMap

1. Download the Open Telemetry Deployment Yaml
opetelemetry-demo.yaml

1. Adding opsramp exporter in the exporter section of
the configuration as shown towards to the right

2. apply the yaml in kubernetes

Creating the Namespace

kubectl create namespace otel-demo

Deploying the application

kubectl apply --namespace otel-demo -f opentelemetry-demo.yaml

Port forwarding to view the UI

kubectl port-forward svc/my-otel-demo-frontendproxy 8080:8080

https://raw.githubusercontent.com/open-telemetry/opentelemetry-demo/main/kubernetes/opentelemetry-demo.yaml

Setting Up Demo App in Kubernetes

With the frontendproxy port-forward set
up, you can access:

● Webstore: http://localhost:8080/
● Grafana:

http://localhost:8080/grafana/
● Feature Flags UI:

http://localhost:8080/feature/
● Load Generator UI:

http://localhost:8080/loadgen/
● Jaeger UI:

http://localhost:8080/jaeger/ui/

http://localhost:8080/
http://localhost:8080/grafana/
http://localhost:8080/feature/
http://localhost:8080/loadgen/
http://localhost:8080/jaeger/ui/

Setting Up Demo App in Kubernetes (helm)

Deployment Using Helm
Installing Helm (https://helm.sh/docs/intro/install/)

curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

Adding helm repository

helm repo add open-telemetry https://open-telemetry.github.io/opentelemetry-helm-charts

Download the values file and modify to add exporter config similar to what we added in YAML Deployment

wget https://raw.githubusercontent.com/open-telemetry/opentelemetry-helm-charts/main/charts/opentelemetry-

demo/values.yaml

Install the chart with modified values file

helm install my-otel-demo open-telemetry/opentelemetry-demo --values my-values-file.yaml

Application - Trace Instrumentation Demo

High Level Steps to follow while instrumenting an application
● Define Resource & Exporter
● Create a Tracer from defined resource & exporter
● Define Span with context & name where ever required in application logic
● Propagate context of parent span in all child spans
● Set attributes, events & errors where ever necessary

For detailed examples for each programming language with sample instrumented code, please
refer doc https://github.com/opsramp/tracing-docs

59

60

Part 2:

Observability in Action

61

Part 3:

Q & A

62

Thank you
Neil Pearson

neil.pearson@hpe.com

63

