Y Google Cloud

Running Reliable systems

Part 2: Service Level Objective (SLO) Math

HPE Meetups 2022

Meet our speaker

Leonid Yankulin
Developer Relations Engineer, DEE,
Observability lead

at /w, ww and M/@minherz

Google Cloud

https://www.linkedin.com/in/minherz/
https://github.com/minherz
https://medium.com/@minherz

Let's begin with...

What | hope you already know: What an SLO is.
What | hope you'll learn: How to use SLOs. How not to use SLOs.

Heads up: Math Ahead. It is just probability.

Google Cloud

A challenge of defining SLO

Google Cloud

The Front Door SLO

User happiness

% Available enough
% Fast enough
% Complete enough

Meet Expectations —
Don't Expect Perfection

Photo by Evelyn Paris on Unsplash

Google Cloud

https://unsplash.com/@evelynparis?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

"NeSted" SLOS

"But it's more complicated than that" y -

) % Rt
3 = : . :
:‘ < R) . -

Bad Naive Math

IF user expects 99.0%

THEN webserver should be 99.9%

’

THEN hypervisor should be 99.99%
THEN infrastructure should be 99.999% '
.. but what there are more layers? %% i

Photo by Nathan Dumlao on Unsplash

https://unsplash.com/@nate_dumlao?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

DevOps/IT Strategies: The Pyramids

Component-level reliability Scalable reliability

Google Cloud

Component-Level Reliability

o Solid base (big cold building, heavy iron,

redundant disks/net/power)

o Each component up as much as
possible

o Total availability as goal

Scales up

Google Cloud

Scalable Reliability

e Less-reliable, but Cost-effective
base

o Warehouse scale (many machines)

Software improves availability

Aggregate availability as goal

Scales out

Google Cloud

7 technical
| Infrastructure |
I I
? I Container I
—_——— Platf
W a-t E S e ° |'_F’roduc(Infrastructure_] I atorm |
I I I |
| User Service | Big Data
I I
| | | Platform |
I I
ot] it e e it e ot o e n I R I I I O v
| | | I I | Email Service | I Balancing |
| Book I I Service |
| Book | | Book | I AAullhoﬂf)g | I I I |
Application Application pplication piodiict
I Frontend I I Frontend I [| | Catalog | | ggm:‘; |
I I I | | Book | : service ||_>| Service |
Ordering — >
I * ‘ l w Application l | | I I
| | | \ | | | Billing [Database I
| | [Service I I Service
| | | Book Storage User Account Email Servi | Book I | I
Service Service mall.Service | Reading | | |
| | | | Application | |
| | | | | | [Ordse;nl;liics,;cry | I Object I
L - — —J Service
| . | 1 1 | | | I I
S Y —
| Book | | Book | : COB:t:ﬁts : I Pub/Sub |
| Database | | Database User Database | | Service | [Service [
e SO | |
G -J C - e J L I I
Crypto
I Service I
I I
. . L o _J
Source for images: Report by Tischler, McGhee, & Nukala

Google Cloud

https://info.blameless.com/oreilly-building-reliable-services-on-the-cloud

Good math to calculate SLO

Google Cloud

Probability, Really Quick

One 6-sided dice:

"bad"roll %6 =0.167...
VS.
"good" roll % = 0.833...

For Four 6-sided dice:

%°%%*% = 0.482

"you'll never do as well as the worst case single throw" Photo by Alperen Yazgi on Unsplash

https://unsplash.com/@armato?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Probability, Really Quick

Four N-sided dices:

(N—1)/N)4 eg: 10-sided: (0.9)*=0.6561

M arbitrary-sided dices:
(N, -1/N))* (N-T/N,) * (N, -T/N,)

eg: two 6-sided, one 10 sided, one 20 sided dice:
5/6¢5/6¢9/10¢19/20 =0.83¢0.83¢0.90¢0.95 =0.59

"you'll never do as well as the worst case single throw" Photo by Alperen Yazgi on Unsplash

https://unsplash.com/@armato?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Good Math Needs a Model

Distributed system model to allow

e Scalability (Horizontal, Vertical)

Sharding, Partitioning

Replication, Load Balancing

Sharding
(e.g. Range)

\

Y

Server Server Server
Keys: [a, b) Keys: [a, b) Keys: [a, b)
Instance: 1 Instance: 2 Instance: 3

Server Server Server
Keys: [b, c) Keys: [b, ¢) Keys: [b, c)
Instance: 1 Instance: 2 Instance: 3

Server Server Server
Keys: [c, d) Keys: [c, d) Keys: [c, d)
Instance: 1 Instance: 2 Instance: 3

t

!

]

Replication (e.g. Paxos)

Source for images: Report by Tischler, McGhee, & Nukala

Google Cloud

https://info.blameless.com/oreilly-building-reliable-services-on-the-cloud

Serial Services

99.9%
Seqguential dependencies:
3 nines @ depth 3 gets us "2.7" nines oo 50,
0.999¢0.999¢0.999 = 0.997 o
Or 99.7% a.k.a SLO*depth
99.9%

By the way...
0.999¢0.9999¢0.99999 = 0.9988901

"your architecture choices can have more of an impact than SLOs of your dependencies"

[: Service A j

{

[: Service C j

Parallel Services

Parallel service composition
when they all are needed:

0.999¢0.999¢0.999 =0.997

Or 99.7% a.k.a SLO*depth

4 Service A

» Load
§%% Balancing

—

99.9%

A Service C

99.9%

Parallel Services With Redundancy

Computed SLO:
» Load
1 - failure_ratio"redundancy [”“ Balancing]

[4 Service A' }

99.9% 99.9% 99.9%

where failure_ratio = 1 - service SLO

A Service A A Service A"

For 3 copies of the same service
1-(0.001)3 = .999999999
Or 99.99...% (9 ninesl!!)

Set Theory of SLO

Intersection availability Union availability
/ all dependencies must be available/ / at least one dependency is available /

3 10 100 2 3
99% 97% 0% 37% 4 Nines 6 Nines
99.9% 99.7% 99% ?0% 6 Nines 9 Nines
99.99% 99.97% 99.9% 99% 8 Nines 11 Nines

99.999% | 99.997% 99.99% 99.9% | 10 Nines 15 Nines

SLO,*SLO,e...eSLO 1-(FR eFR,s...sFR)

s it for real?
Why aren't we swimming in nines?

Google Cloud

Reality Behind the Theory

« Technical bottlenecks
o Networking and Load Balancing are nines-lynchpin
o End-to-end SDLC ownership
« Human bottlenecks
o Mistakes, Churn, Toil
o Shallow Understanding / Striving for Over-Simplified
Learnings

Google Cloud

What to do?

DO NOT worry about downward implications of your SLOs
CONSIDER your customer's happiness first and foremost

HELP infrastructure teams understand the new world

Google Cloud

Two Models

% Stacks:
o Multiple copies of real stack
o No problem to lose one
o Advantage Load Balancing among
copies
% Service Mesh:
o Hard to accomplish
o Cognitive & operational cost
o Better resilience and flexibility

Photo by Crawford Jolly on Unsplash

Google Cloud

https://unsplash.com/@crawford?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/stack?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Two Models

Stacks: Full Mesh:

Load Load
Fﬁ Balancing fF\ Balancing
s D L\

:A.E Service A EA Service A'

AE Service B 4 Service B'
_— e

f'E Service C f. Service C'
| W | P

A'E Service D A. Service D'
_— ¢/

Google Cloud

Gnarly Details

v Other models
- You Only Look Once (YOLO)
-> Megalith

v/ Costs
-> Compute and storage
-> Operational complexity
-> Consistency, sharding, replication

v' Further reading
=> Failure domains and modes
-> Graceful degradation

Photo by Natalya Letunova on Unsplash

Google Cloud

https://unsplash.com/@naletu?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

This seems too easy! You're totally right...

Fallacies (so far): Solutions:
(1) SLOs must get tighter with depth (1) Resilience via Engineering!
(2) | need to control the entire stack (2) Do | own load balancer, mobile

tower, power grid?

Google Cloud

You can build
more reliable things
on top of
less reliable things

Watch "SRE | aspire to be" by @aknin

https://www.usenix.org/conference/srecon19emea/presentation/aknin

Closing...

You should design a system at 'the

front door". It's a common mistake to
follow Conway's Law and define it at team
boundaries, then get frustrated by the "bad |

math" that ensues.

Photo by Adam Miller on Unsplash

Google Cloud

https://unsplash.com/@adamthehooligan?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Thank you

Find Google SRE publications—including the SRE

Books, articles, trainings, and more—for free at

Il OREILLY]

Rehabﬂity
Engineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

Edited by Betsy Beyer, Chris Jones,
Jennifer Petoff & Niall Richard Murphy

sre.google/resources

Reliability
Workbook

Practical Ways to Implement SRE

Edited by Betsy Beyer,
Niall Richard Murphy, David K. Rensin,

Kent Kawahara & Stephen Thorne

Book covers copyright O’'Reilly Media. Used with permission.

O'REILLY"

Building Secure &
Reliable Systems

Best Practices for Designing, Implementing
and Maintaining Systems

Heather Adkins, Betsy Beyer,
Paul Blankinship, Piotr Lewandowski,

Ana Oprea & Adam Stubblefield

Jameg Brookbank?’
& Steye McGhee

REPORT

Google Cloud

https://sre.google/resources/

