
HPE Meetups 2022

Running Reliable systems
Part 2: Service Level Objective (SLO) Math

Leonid Yankulin
Developer Relations Engineer, DEE,

Observability lead

 at /minherz, /minherz and /@minherz

Meet our speaker

https://www.linkedin.com/in/minherz/
https://github.com/minherz
https://medium.com/@minherz

Let's begin with…

What I hope you already know: What an SLO is.

What I hope you'll learn: How to use SLOs. How not to use SLOs.

Heads up: Math Ahead. It is just probability.

A challenge of defining SLO

The Front Door SLO

Photo by Evelyn Paris on Unsplash

User happiness

★ Available enough

★ Fast enough

★ Complete enough

Meet Expectations ‒
Don't Expect Perfection

https://unsplash.com/@evelynparis?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

"Nested" SLOs

"But it's more complicated than that"

"My service depends on other teams"

Bad Naive Math

Photo by Nathan Dumlao on Unsplash

IF user expects 99.0%

THEN webserver should be 99.9%

THEN hypervisor should be 99.99%

THEN infrastructure should be 99.999%

… but what there are more layers? 🤯

https://unsplash.com/@nate_dumlao?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

DevOps/IT Strategies: The Pyramids

Component-level reliability Scalable reliability

Component-Level Reliability

● Solid base (big cold building, heavy iron,

redundant disks/net/power)

● Each component up as much as
possible

● Total availability as goal

● Scales up

Scalable Reliability

● Less-reliable, but Cost-effective
base

● Warehouse scale (many machines)

● Software improves availability

● Aggregate availability as goal

● Scales out

What Else?

Source for images: Report by Tischler, McGhee, & Nukala

https://info.blameless.com/oreilly-building-reliable-services-on-the-cloud

Good math to calculate SLO

Probability, Really Quick

Photo by Alperen Yazgı on Unsplash"you'll never do as well as the worst case single throw"

One 6-sided dice:

"bad" roll ⅙ = 0.167…
vs.
"good" roll ⅚ = 0.833...

For Four 6-sided dice:

⅚•⅚•⅚•⅚ = 0.482

https://unsplash.com/@armato?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Probability, Really Quick

Photo by Alperen Yazgı on Unsplash"you'll never do as well as the worst case single throw"

Four N-sided dices:

(N-1)/N)4

M arbitrary-sided dices:

(N1 - 1/N1) * (N2-1/N2) * (NM-1/NM)

eg: two 6-sided, one 10 sided, one 20 sided dice:
5/6•5/6•9/10•19/20 = 0.83•0.83•0.90•0.95 = 0.59

eg: 10-sided: (0.9)4 = 0.6561

https://unsplash.com/@armato?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Distributed system model to allow

● Scalability (Horizontal, Vertical)

● Sharding, Partitioning

● Replication, Load Balancing

Source for images: Report by Tischler, McGhee, & Nukala

Good Math Needs a Model

https://info.blameless.com/oreilly-building-reliable-services-on-the-cloud

99.9%

Serial Services
99.9%

99.9%

Sequential dependencies:

3 nines @ depth 3 gets us "2.7" nines
0.999•0.999•0.999 = 0.997

Or 99.7% a.k.a SLO^depth

"your architecture choices can have more of an impact than SLOs of your dependencies"

By the way…
0.999•0.9999•0.99999 = 0.9988901

99.9%

Parallel Services

99.9% 99.9%

Parallel service composition
when they all are needed:

0.999•0.999•0.999 = 0.997

Or 99.7% a.k.a SLO^depth

99.9%

Parallel Services With Redundancy

99.9% 99.9%

Computed SLO:
1 - failure_ratio^redundancy

where failure_ratio = 1 - service SLO

For 3 copies of the same service

1-(0.001)3 = .999999999

Or 99.99…% (9 nines!!)

Set Theory of SLO

Component
Availability

Number of Components Number of Components

3 10 100 2 3
99% 97% 90% 37% 4 Nines 6 Nines
99.9% 99.7% 99% 90% 6 Nines 9 Nines
99.99% 99.97% 99.9% 99% 8 Nines 11 Nines
99.999% 99.997% 99.99% 99.9% 10 Nines 15 Nines

Intersection availability
/ all dependencies must be available /

Union availability
/ at least one dependency is available /

SLO
1
•SLO

2
•...•SLO

N
1-(FR

1
•FR

2
•...•FR

N
)

Is it for real?
Why aren't we swimming in nines?

● Technical bottlenecks
○ Networking and Load Balancing are nines-lynchpin
○ End-to-end SDLC ownership

● Human bottlenecks
○ Mistakes, Churn, Toil
○ Shallow Understanding / Striving for Over-Simplified

Learnings

Reality Behind the Theory

What to do?

✓ DO NOT worry about downward implications of your SLOs

✓ CONSIDER your customer's happiness first and foremost

✓ HELP infrastructure teams understand the new world

Two Models

Photo by Crawford Jolly on Unsplash

★ Stacks:
○ Multiple copies of real stack
○ No problem to lose one
○ Advantage Load Balancing among

copies
★ Service Mesh:

○ Hard to accomplish
○ Cognitive & operational cost
○ Better resilience and flexibility

https://unsplash.com/@crawford?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/stack?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Two Models

99.9%

99.9%

99.9%

99.9%

Stacks: Full Mesh:

Gnarly Details

Photo by Natalya Letunova on Unsplash

✓ Other models
➔ You Only Look Once (YOLO)
➔ Megalith

✓ Costs
➔ Compute and storage
➔ Operational complexity
➔ Consistency, sharding, replication

✓ Further reading
➔ Failure domains and modes
➔ Graceful degradation

https://unsplash.com/@naletu?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

This seems too easy! You're totally right…

Fallacies (so far):

(1) SLOs must get tighter with depth

(2) I need to control the entire stack

Solutions:

(1) Resilience via Engineering!

(2) Do I own load balancer, mobile
tower, power grid?

You can build
more reliable things

on top of
less reliable things

Watch "SRE I aspire to be" by @aknin

https://www.usenix.org/conference/srecon19emea/presentation/aknin

Closing…

Photo by Adam Miller on Unsplash

🙷You should design a system at "the
front door". It's a common mistake to
follow Conway's Law and define it at team
boundaries, then get frustrated by the "bad

math" that ensues.🙷

https://unsplash.com/@adamthehooligan?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Thank you

Find Google SRE publications—including the SRE
Books, articles, trainings, and more—for free at

sre.google/resources

Book covers copyright O’Reilly Media. Used with permission.

https://sre.google/resources/

